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Abstract—This paper presents a virtual environment for sim-
ulation and validation of IoT networks in real life scenarios.
The virtual environment is used to generate simulation models
for realistic situations with inputs from IoT use cases and
their requirements. The interaction between discrete computing
parts and continuous-time dynamic parts is demonstrated in a
smart grid use case. However, the cross-domain interoperability
between grid components and communication infrastructures is
incorporated into the use case as well. The platform is developed
within the VICINITY project funded by the EU Horizon 2020
program.
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I. INTRODUCTION

Nowadays, the number of applications in which IoT net-

works are deployed grows rapidly. These infrastructures oper-

ate in different domains such as smart cities, energy, eHealth,

and transportation and behave like isolated islands in the global

IoT ecosystem. Their interconnection is a big challenge that

still needs to be resolved. One promising approach towards

interoperability of IoT networks across different domains is

proposed by the VICINITY project. The project is supported

by European Union Horizon 2020 program with the duration

of 4 years (Jan. 2016 - Dec. 2019) and the consortium of 15

partners from 7 different countries.

A. The VICINITY project

The goal of the VICINITY project is to develop a platform

that connects isolated IoT infrastructures into one global

ecosystem called virtual neighborhood where users can select

to which other systems their smart objects should be connected

in a peer-to-peer network. The semantic interoperability of

smart objects coming from different operators and using dif-

ferent standards is enabled with the semantic model integrated

into the VICINITY platform [1]. The VICINITY architecture

offering interoperability ”as a service” is shown in Figure 1.

It is based on a decentralized, bottom-up and cross-domain

approach that resembles a social network, where users can

configure their setups, integrate standards according to the

services they want to use and fully control their desired level

of privacy in a P2P (peer to peer) network.

As a part of the VICINITY project, this work has been supported by
EU (European Union) program Horizon 2020 under grant agreement number
688467.

Fig. 1. High-level VICINITY architecture [2]

The focus of the work presented in this paper is to build

a virtual environment for simulation and validation of IoT

infrastructures and their use cases in real life scenarios before

their real deployment. Here, a smart parking and energy use

case at one of the VICINITY pilot sites, located in Tromsø,

Norway, will be used for demonstration.

B. Simulation of IoT networks in realistic scenarios

The size of the IoT market today is growing at enormous

speed and will continue to do so. The number of connected

devices has already exceeded the worlds human population [3].

In such complex IoT networks simulation plays an important

role for the early-phase validation before their deployments in

the real-life world.

[4] proposes the agent-driven Smart Shire (S3) simulator

that supports large-scale simulations with different communi-

cation mechanisms such as TCP/IP, MPI and shared memory.

In [5] the authors extend Smart Shire towards IoT for the

multi-level cross-domain simulation where the agent-driven S3

simulator [4] is used for modeling objects and services at the

higher level and the discrete-event OMNeT++ simulator1 for

modeling communication between objects at the lower level.

After a number of experiments, they came to the conclusion

that the simulation performance degrades as the number of

entities simulated at the lower level with OMNeT++ increases.

1https://www.omnetpp.org

978-1-7281-0637-3/19/$31.00 ©2019 IEEE



To deal with this problem, [6] proposes an approach based

on parallel and distributed simulation (PADS). The approach

in [6] is based on the use of a hybrid simulator at the lower

level where OMNeT++ is combined with the Matlab/Simulink-

based simulator ADVISOR and works with it in succession.

However, this approach does not provide solutions for general

problems of the PADS simulation, such as lack of interop-

erability among simulators and lack of approaches for the

automatic deployment and management of simulators on the

distributed infrastructure.

Another hybrid simulation approache was proposed by [7]

and [8]. [7] replaces the agent-based simulator S3 with the

Agent-based COoperating Smart Object (ACOSO) simulator

for modeling smart objects in IoT networks. [8] presents

the general-purpose hybrid simulation platform that supports

simulation of interconnected IoT devices characterizing them

by mobility, communication, and energy models.

This paper brings the following novelties over state of

the art: The proposed simulation framework supports multi-

level simulation using only one simulation technique based

on discrete-event simulation. The framework allows dynamic

switching between models at different levels of abstraction that

simplify significant portions of a simulated IoT network with

fairly rough-grained time resolution. This further allows us to

dynamically observe details that are relevant and filter ones

that are not of interest for a particular simulation scenario.

The following section describes the proposed OMNeT++-

based framework for simulation of real-life scenarios for IoT

platforms and infrastructures in detail. The rest of the paper is

organized as follows. Section III describes the demonstration

of the proposed framework on a smart parking use case of the

VICINITY pilot site in Tromsø. Sections IV and V conclude

the paper and identify future work, resp.

II. OMNET++-BASED SIMULATION FRAMEWORK FOR

IOT NETWORKS

This section describes the proposed multi-level simulator

including its core framework and the integration with the OM-

NeT++ network simulator. Before the implementation started,

the prevailing requirements for a simulator of IoT networks

from SoA (State of the Art) have been collected. In addition,

some requirements arisen from the VICINITY project have

also been considered. These requirements are listed in the

following:

1) Possibility to simulate thousands of interconnected de-

vices, as stated in [5]

2) Support for running proactive approaches [5]. While

highly detailed simulation runs can provide insight into

the fine-grained processes within interactions of differ-

ent devices in IoT networks, simulation performance

degrades as the simulation runs tend to be very slow.

3) Capabilities to perform the simulation of hardware in

the loop

4) High scalability of scenarios to be simulated. Real-time

capabilities of a simulation framework should not be lost

in the case of a large scale simulation of thousands of

entities that communicate with each other.

5) Possibility to employ parallel and distributed simula-

tions, either out of the box or through later adaption

of these features, where needed [6]

6) Fast model development for fast deployment in use

cases.

7) Possibility to handle heterogeneity of cross-domain IoT

networks

8) Possibility to integrate further domain-specific simula-

tors into the framework with little effort.

A. The Core Simulation Framework

The core simulation framework is based upon a lightweight

implementation of the Parallel Discrete-Event Systems

(PDEVS) formalism [9]. The goal of Parallel DEVS is to

enable models to receive multiple external events simultane-

ously and process them in a single step. In addition to the two

state change functions for internal events and external events

of atomic models, PDEVS introduces a third state change

function for confluent events. Basically, it is a special case of

the external transition function where the elapsed time equals

the result of the time advance function of the model. It is used

to determine a new state of the model whenever an internal

and an external event collide.

The core simulation framework contains a simulator class

that manages the simulation by advancing the models’ simu-

lation time, scheduling autonomous events, and routing input

and output between models. The behavior of the simulator

class is adjustable to different challenges through specialized

implementations of its components like container classes,

event listeners or the future event schedule. The general

composition of the framework is shown in Figure 3.

Hybrid models. Following the PDEVS formalism, the used

models can be divided into two categories:

1) Atomic models. They form the smallest building block

within the system model. Their state is defined indirectly

by their state change functions for internal, external

and confluent events, their output function and the time

advance function.

2) Network models. Network models are a collection of

atomic models and possibly other network models con-

nected. Their primary task is to provide routing infor-

mation to and from the models it contains. The state of

a network model is indirectly defined by the state of all

its components’ models.

In order to represent continuous time systems, hybrid mod-

els are used. These implement the same interface as plain

atomic models but also provide mechanisms to approximate

continuous time.

B. Hierarchy Middleware

The hierarchy middleware implements in details the various

levels throughout the model topology. The goal is to exchange

atomic models with network models that are more detailed

during runtime. The atomic model is used to approximate the



Fig. 2. The model tree and organization of hierarchical levels

desired behavior at a higher level of abstraction for better sim-

ulation performance, while the dynamically interchangeable

network model offers a higher level of detail at the price of

smaller steps in time.

This is realized through the introduction of a new kind

of model, the HierarchicalAtomic. It is composed of the

aforementioned atomic and network models and an instance

of a simulator. From the outside, it appears to be a regular

atomic model but internally it is able to switch from one

model to another. When the model switches from its internal

atomic model to the internal network model, the resolution

of simulation time becomes finer grained due to smaller time

advances within the Network.

The organization in atomic and network DEVS models and

DEVS’ closure under coupling allow for easy (re-)arrangement

of model building blocks to more advanced and complex

models in a tree-like structure. This procedure is supported

Fig. 3. Architecture of the framework

by the here proposed approach. As can be seen in figure

2, the here introduced model that contains parts of the level

architecture can easily be treated just as plain atomic DEVS

model that is part of a network model in all positions in

the tree structure. Moreover, the atomic models that belong

to the contained network model can be exchanged with the

new model as well, thus forming the different levels of

hierarchy within the level of detail and time advancement of

the simulation.

Regarding the approach to modeling, a bottom-up procedure

is recommended, where the deepest and most detailed level is

designed in its whole and then partitioned into smaller leaves

of the tree. As the performance gain of the dynamic exchange

between models with varying levels of detail is dependent on

the specific scenario, it is possible that more efficient partitions

of models along the tree are only eventually evaluated during

simulation runtime. The bottom-up construction here ensures

that the main part of the scenario has to be developed only

once and then merely has to be partitioned accordingly. Also,

if the models that are to be exchanged are the kind of whole

protocol-stacks or space-divided parts of the environment,

they, in turn, can be heavily reused.

C. OMNeT++ integration

The powerful network simulator OMNeT++ is used as

a basis for the simulator proposed in this work. Together

with its INET extension, it offers simulation tools for the

communication, energy consumption, and movement of cyber-

physical systems.



1) Shared Environment: To combine both, OMNeT++ and

the core simulator described in Section II-A in a single

simulation loop, a shared environment is proposed. It provides

the functionality of both simulators. To that end, the command-

line off-the-shelf environment of OMNeT++ is extended with

capabilities needed to supervise the core simulation frame-

work. Additionally, the sequential scheduler of OMNeT++ is

extended to consider the future event schedules of both simu-

lators. It produces synchronization events for both simulators

that determine which simulator is executed first. These events

are executed through a callback to the shared environment

which then advances the state of the simulators.

2) OMNeT++Interface: Models of both simulators can in-

teract through a designated class that has to be specialized for a

concrete scenario. It implements characteristics of the modules

used by OMNeT++ and the event listener integrated into the

core framework. Hence, it is able to react to inputs from both

simulators and can switch from one simulator to another. This

way, the models of both simulators can communicate with

each other across the level hierarchy.

III. CASE STUDY: SMART ENERGY USE CASE

To illustrate the applicability and performance of the devel-

oped multi-level simulator, we modeled and simulated a smart

energy use case. This particular use case describes a smart

energy scenario within an city. The city has a photovoltaic

system and a windmill as power suppliers and a parking lot and

a couple of houses as consumers. Electric vehicles can move

inside the city and the parking lot. By using a smart parking

service through a mobile app, users of the system can request

to reserve their parking slot of choice within the participating

parking facilities. The availability of the parking slots is then

displayed through the mobile app as well as through the optical

indicators located on the respective parking slots for random

people, that do not participate in the smart parking service.

The described scenario has been modeled and simulated

using the proposed approach at three distinct levels of ab-

straction: The first two higher levels have been implemented

only using classes provided by the core simulator, presented

in Section II. The third (lowest) level has been implemented

with OMNeT++ 5.4.12 and its INET extension 4.0 3.

A. The highest abstraction level - Level 0

The highest level of abstraction models only the most

abstract processes that are needed to provide basic information

for the following lower levels of the simulation scenario. This

is shown in Figure 4.

The CarGenerator atomic model acts as a source to the

rest of the modules and provides the information needed to

simulate users and random cars at the lower abstraction levels.

This information is then passed to the CarProcessor.

The CarProcessor then determines if the received informa-

tion is used to simulate a scenario with a random visitor of the

parking facility or with a user of the smart parking mobile app.

2https://www.omnetpp.org/21-articles/3752-omnet-5-4-1-released
3https://inet.omnetpp.org/2018-06-28-INET-4.0.0-released.html

Fig. 4. Smart Energy use case: Level 0

In the latter case, information about the desired parking slot

is generated and used in an attempt to make a reservation via

the model of the smart parking app. If this reservation fails,

the information of the app user is treated like information

about a random visitor of the facility and sent further to the

ParkingFacility.

Once entering the ParkingFacility model, the received in-

formation is used to model the abstract behavior of both

random visitors and smart parking service users competing

for available parking slots, parking and subsequently leaving

the facility again.

Users of the app that succeed with a reservation will directly

target their desired parking slots while random arrivals and

users that failed to reserve their desired slot will choose the

first free available parking slot. When arriving at the slot, it

will be determined if it is still free or in the meantime has

already been reserved by a user or taken by another random

car that arrived first. If it has already been taken, they will

head for the first free parking opportunity again. If they do

not succeed in finding one, the car will leave the parking

facility. If the parking process succeeds, the car will occupy

the chosen parking slot for a while and then subsequently leave

the parking facility again.

B. The middle abstraction level - Level 1

The following level of abstraction has been used to further

detail the processes inside the ParkingFacility. It is shown in

Figure 5. It divides the raw ParkingFacility into three different

parking decks that internally mimic the behavior of the parking

facility in Tromsø.

The information about car arrivals will be forwarded to

the different parking decks in sequence; When entering the

facility, the parking decks have to be traversed until the desired

parking spot is reached. When a car leaves the ParkingFacility,

the decks have to be traversed again in order to reach the

exit. Additionally, the ParkingDeckControl is used to send

information from and to the model of the app.

C. The lowest abstraction level - Level 2

The lowest level of the simulation scenario has been mod-

eled with OMNeT++ 5.4.1 and INET 4.0. Here, the informa-



Fig. 5. Smart Energy use case: Level 1 - the Parking Facility

tion produced by the higher levels described above is used to

dynamically instantiate simulated entities and to represent the

communication between sensors, actuators, and the app with

the advanced capabilities of INET.

At this level, the parking facility has been modeled as an

OMNeT++ compound module and the single parking decks

as submodules of it. Although the different submodules can

interact with each other across submodule boundaries, only

the ones which are associated with the respective active higher

level parts of the simulation will be actually active.

If the higher level parking deck model switches to the

respective part of the OMNeT++ module at Level 2, cars

will be created as mobile nodes with specific characteristics.

The characteristics depend on the information generated at

the levels above and the cars behavior is determined by the

corresponding states at Level 1. Depending on if a car is now

in the phase of searching for a parking slot or if it is already

parked or even leaving the parking deck, the wireless node

will be created and its goals will be set accordingly. One such

parking deck modeled in OMNeT++ can be found in Figure

6.

Every Car has a battery, that is discharging as long as the

car is moving inside the environment. When a car is parked

inside the parking facility its accumulator is charged. When it

is fully charge, it stops charging and the car is ready to drive

away.

Fig. 6. Smart energy use case: Omnet++ Model of Parking Deck at Level 2

D. Results

In order to examine the scaling capabilities of the proposed

simulator, the lowest abstraction level has been divided into

three parts (one for each parking deck at Level 2). In the

following, they will be denoted as L2a, L2b, and L2c. Level

0 and Level 1 will be denoted as L0 and L1, respectively.

All experiments have been performed on an Ubuntu virtual

machine installed on a Lenovo T420s. It uses 2 cores of the

underlying Intel Core i5-2520M architecture and has 4 GB

RAM.

As stated in requirement (4) in Section II, the ability to

run simulations in almost real-time is of particular importance

and for this reason, the experiments have also been centered

around the wall clock time (WCT) as an indicator.

The simulation time for each simulation run was set to

120 seconds and the wall clock time for the single runs was

recorded. The wall clock times reported in Table I represent

the average of several independent simulation run times.

As expected, the simulation runs with only the first level

L0 and the first two levels L0 and L1 active have achieved

similar average wall clock times. Since L0 was used to produce

information for the levels below, the runs at this level finished

relatively fast. L1 served only as a space division for the L2,

and therefore the overhead added by this level is negligible

(only 0.256 seconds). This is also shown in Table I.

As expected, the first real spike in the average WCT has

occurred with the activation of L2a. In this case, the average

WCT increases from 4.516s (with the activated L0 and L1)

to 6 seconds. However, with the addition of the next two

levels L2b and L2c respectively, the overhead did not increase

dramatically and even for the last case, the WCT dropped back

to 5.903 seconds.

This was a direct consequence of the architecture of the

underlying model; the three parking decks that are represented

by the levels L2a - L2c, are traversed by cars in sequence.

Therefore, we suppose that the simulation time of 120 seconds

is not sufficient to create an adequate number of nodes at

the later levels L2b and L2c respectively. For this reason,

the simulation with all levels activated was repeated with an

additional number of cars as mobile nodes created from the

beginning of the simulation instead of dynamically relying on

the information provided by L0. The WCT for this scenario

can be seen in Table II; it is again expressed as the average

of times required for single simulation runs.

Level WCT

L0 4.260315s

L0 + L1 4.516574s

L0 + L1 + L2a 6.003036s

L0 + L1 + L2a + L2b 6.627343s

L0 + L1 + L2a + L2c 5.9030517s

TABLE I
WALL CLOCK TIME OF COMBINATIONS OF DIFFERENT LEVELS



Level WCT

L0 + L1 + L2a + L2b + L2c 9.442795s

TABLE II
WALL CLOCK TIME WITH INITIAL POPULATED LEVELS

IV. CONCLUSION

In this paper, we presented an approach towards modeling

Internet of Things infrastructures together with the implemen-

tation of a prototype of a multi-level simulator. The approach

proposes interconnection between models at different abstrac-

tion levels within the discrete event simulation framework

and has been demonstrated on a smart parking use case

of the VICINITY pilot site in Tromsøtogether with energy

considerations.

The specific solution for this use case has used 3 levels of

simulation. The first level has been used to generate abstract

information on the general movement of simulated entities

and communication between them. Furthermore the energy

structures around the use case have been modeled. The second

level has served as a space division for the lower level. It

produced more detailed information about the movement that

has been used as a basis to dynamically activate the different

parts of the lowest level - Level 2. Level 2 has then used

the powerful network simulator OMNeT++ with the INET

framework to simulate the details of a smart parking service,

the movement of users, the communication between them, the

charging behaviour of cars and the environment.

The experiments executed on the use case show that with

all three levels active the execution time increases almost

two times. With respect to interoperability, the simulator

has proven to fulfill the requirements for an IoT simulator,

particularly Requirements (7) and (8) listed in Section II. This

is achieved through the following capabilities:

1) Dynamic switching between models at different levels

of abstraction

2) Spreading multiple simulation engines across the model

tree shown in Figure 2

3) Modeling and simulation of mobile system entities and

their communication through the OMNeT++ integration

V. FUTURE WORK

The extension of this work towards hardware in the loop

simulation is work in progress. We think it can easily be

integrated with the approach presented in [10] at the lower

abstraction layers. For the higher abstraction layers, the basic

idea is to open ports on the host machine for direct TCP/IP

traffic with the hardware to be integrated. First tests with the

VICINITY Gateway running on a Raspberry Pi are going on

at the moment.

In its current state, the prototype supports the usage of

continuous-time models through hybrid models. However,

continuous interaction between such models can still pose

some problems regarding the discrete-time architecture of the

simulator. A solution to this was proposed in the generalized

DEVS specification [11]. It uses polynomial events to approx-

imate continuous output.

Large-scale IoT scenarios can massively profit from parallel

and distributed simulation techniques. Through the integration

of MPI, OMNeT++ supports parallel and distributed execution.

Future work should use this provided architecture and enable

the developed simulator to make full use of OMNeT++

capabilities.

The importance of the functional mock-up interface (FMI)

for the simulation of CPS is quite obvious. For the integration

of more domain-specific languages and simulators at the

lowest level, FMI needs to be integrated into OMNeT++. We

already integrated SystemC models into the simulation without

using FMI. However, the need for more exact simulation

results can greatly benefit from the integration of FMI and

languages like Modelica.
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