

Project Acronym: VICINITY

Project Full Title: Open virtual neighbourhood network to connect intelligent
buildings and smart objects

Grant Agreement: 688467

Project Duration: 48 months (01/01/2016 - 31/12/2019)

Deliverable D6.3

Auto-Discovery space deployment validation report

Work Package: WP6 – VICINITY Framework Integration & Lab Testing

Task(s): T6.3 – VICINITY auto-discovery space deployment & validation

Lead Beneficiary: IS

Due Date: 31st December 2018 (M36)

Submission Date: 21st December 2018 (M36)

Deliverable Status: Final

Deliverable Type: R

Dissemination Level: PU

File Name: VICINITY_D6.3_Auto-Discovery space deployment validation report_v1.0.pdf

This project has received funding from the European Union’s Horizon 2020

Research and innovation programme under Grant Agreement n°688467

 D6.3 - Auto-Discovery space deployment validation report 2

 - Public -

VICINITY Consortium

No Beneficiary Country

1. TU Kaiserslautern (Coordinator) UNIKL Germany

2. ATOS SPAIN SA ATOS Spain

3. Centre for Research and Technology Hellas CERTH Greece

4. Aalborg University AAU Denmark

5. GORENJE GOSPODINJSKI APARATI D.D. GRN Slovenia

6. Hellenic Telecommunications Organization S.A. OTE Greece

7. bAvenir s.r.o. BVR Slovakia

8. Climate Associates Ltd CAL United Kingdom

9. InterSoft A.S. IS Slovakia

10. Universidad Politécnica de Madrid UPM Spain

11. Gnomon Informatics S.A. GNOMON Greece

12. Tiny Mesh AS TINYM Norway

13. HAFENSTROM AS HITS Norway

14. Enercoutim – Associação Empresarial de Energia Solar de

Alcoutim

ENERC Portugal

15. Municipality of Pylaia-Hortiatis MPH Greece

1 Deliverable Type:
R: Document, report (excluding the periodic and final reports)
DEM: Demonstrator, pilot, prototype, plan designs
DEC: Websites, patents filing, press & media actions, videos, etc.
OTHER: Software, technical diagram, etc.

2 Dissemination level:
PU: Public, fully open, e.g. web
CO: Confidential, restricted under conditions set out in Model Grant Agreement
CI: Classified, information as referred to in Commission Decision 2001/844/EC.

Disclaimer

This document reflects only the author's views and the European Union is not liable for any use that may be made of the information

contained therein.

 D6.3 - Auto-Discovery space deployment validation report 3

 - Public -

Authors List

Leading Author (Editor)

Surname First Name Beneficiary Contact email

Paralič Marek IS marek.paralic@intersoft.sk

Co-authors (in alphabetic order)

No Surname First Name Beneficiary Contact email

1. Bednár Peter IS peter.bednar@intersoft.sk

2. Guan Yajuan AAU ygu@et.aau.dk

Reviewers List

List of Reviewers (in alphabetic order)

No Surname First Name Beneficiary Contact email

1. Cimmino Andrea UPM cimmino@fi.upm.es

2. Koutli Mary CERTH mkoutli@iti.gr

3. Zivkovic Carna UNIKL zivkovic@cs.uni-kl.de

mailto:marek.paralic@intersoft.sk
mailto:peter.bednar@intersoft.sk
mailto:ygu@et.aau.dk
mailto:mkoutli@iti.gr
mailto:zivkovic@cs.uni-kl.de

 D6.3 - Auto-Discovery space deployment validation report 4

 - Public -

Revision Control

Version Date Status Modifications made by

0.1 31 May 2018 (M29) Initial Draft Paralič (IS)

0.2 20 July 2018 (M31) Draft version of

brief test cases

description

Paralič (IS)

0.3 24 September 2018

(M33)

Draft description of

test case 1

Bednár (IS)

0.4 4 October 2018 (M24) Draft description of

test cases 2 and 3

Bednár (IS)

0.5 19 November 2018

(M35)

Results of test case

2

Paralič (IS)

0.6 30 November 2018

(M35)

Results of test case

1

Paralič (IS)

0.7 3 December 2018

(M36)

Introduction,

Approach

Guan (AAU), Paralič (IS)

0.8 9 December 2018

(M36)

Results of test case

3

Bednár (IS)

0.9 10 December 2018

(M36)

Consolidated

version of D6.3

Paralič (IS), Bednár (IS)

0.9.1 11 December 2018

(M36)

First version for

QAR

Paralič (IS), Bednár (IS)

0.9.2 20 December 2018

(M36)

Final Draft

reviewed

Paralič (IS), Bednár (IS)

1.0 21 December 2018

(M36)

Submission to the

EC

Zivkovic (UNIKL)

 D6.3 - Auto-Discovery space deployment validation report 5

 - Public -

Executive Summary

The presented document is the deliverable “D6.3 – Auto-Discovery space deployment validation report”

of the VICINITY project (Grant Agreement No.: 688467), funded by the European Commission’s

Directorate-General for Research and Innovation (DG RTD), under its Horizon 2020 Research and

Innovation Programme (H2020). This deliverable contributes to reach Milestone 7 (MS7 - First integrated

system prototype available) by validation of the Auto-Discovery platform deployment within the task

T6.3.

The document presents the process, the results and the quality and performance feedback for the

validation of the auto-discovery functionality of the VICINITY platform. The key enabler for achieving

smooth integration of heterogeneous IoT systems, platforms, and devices is the interoperability at the

semantic level. In the VICINITY platform the semantic interoperability relies on the VICINITY Agents at the

client/node side and the Semantic Discovery and the Agent Configuration Platform (SDACP) at the

server/cloud side. SDACP in turn consists of a semantic triplestore and the service that provides the API

for manipulating IoT object descriptions stored in the triplestore.

During the validation process we proved that:

• Auto-discovery process of the devices described in the VICINITY ontology is fully functional and

accessible for the IoT platform adapters connected to the VICINITY Agent.

• Current implementation of the SDACP platform uses a Semantic graph database GraphDB1 for

storing semantic triplestores. The GraphDB is able to manage the appropriate level of load

generated by dozens of IoT objects per adapter and dozens of adapters per one VICINITY Agent.

• The core functionality of the Agent, which is responsible for updating the semantic repository,

can perform more than 10.000 DIFF statements per second and more than 15.000 IoT objects per

second.

• The Semantic repository that is available via the Semantic discovery, and configuration service,

offers an average processing time for one insert operation of 0,09s, for one update operation

0,79s, and one delete operation 0.02s2 . However, the current development and testing

installation of SDACP is based on the free licensed version of the GraphDB store that is limited to

two parallel client sessions. This setup can dramatically reduce the scalability, which can be

further enhanced by unlimited commercial version of GraphDB.

This deliverable covers all individual modules that have been developed in WP3 - “VICINITY Server

Implementation” and WP4 - “VICINITY Client Infrastructures Implementation”, with focus on the server

and client side discovery components designed and implemented in the tasks T3.2 and T4.2. Problems

identified are timely reported and solved.

The quality and performance feedback of this task’s tests is used in order to improve the auto-discovery

functionality – its availability and ability to be also deployed to potential middle and large-scale IoT

platforms.

1 http://graphdb.ontotext.com/
2 More details including the relation to the number of IoT objects can be found in section 5.4.

 D6.3 - Auto-Discovery space deployment validation report 6

 - Public -

Table of Contents

Executive Summary ... 5

1. Introduction ... 9

1.1. Context within VICINITY ... 9

1.2. Objectives in Work Package 6 and Task 6.3 .. 10

1.3. Structure of the Deliverable ... 11

2. Approach .. 12

2.1. Tested VICINITY Platform configuration ... 12

2.2. Integration testing coverage .. 13

2.3. Quality and performance measures ... 14

3. Test case 1 - Functional test of the auto-discovery process provided by the VICINITY
Agent .. 15

3.1. Testing objective.. 15

3.2. Testing scenario design .. 15

3.3. Testing Platform .. 17

3.4. Testing Results ... 18

4. Test case 2 - DIFF performance .. 21

4.1. Testing objective.. 21

4.2. Testing scenario design .. 21

4.3. Testing Platform .. 23

4.4. Testing Results ... 23

5. Test case 3 - SDACP performance .. 27

5.1. Testing objective.. 27

5.2. Testing scenario design .. 27

5.3. Testing Platform .. 29

5.4. Testing Results ... 29

6. Quality and performance feedback ... 32

7. Conclusion .. 33

 D6.3 - Auto-Discovery space deployment validation report 7

 - Public -

List of Tables

Table 1 Tested VICINITY Platform configuration .. 12

Table 2 VICINITY Interface integration test coverage ... 13

Table 3 Functional test of the auto-discovery process provided by the VICINITY Agent - testing scenario

design .. 15

Table 4 Functional test of the auto-discovery process provided by the VICINITY Agent - testing results 18

Table 5 DIFF performance - testing scenario design ... 21

Table 6 DIFF performance – testing results .. 23

Table 7 SDACP performance – testing scenario design ... 27

Table 8 SDACP performance – testing results ... 29

List of Figures

Figure 1 Work Package Architecture .. 9

Figure 2 Interaction between the VICINITY components in the functional test of the auto-discovery

process .. 17

Figure 3 Maximum number of successful registered IoT objects and its relation to the size of their TDs ... 19

Figure 4 Agent’s steps to update the global state of the VICINITY platform .. 22

Figure 5 DIFF performance test results ... 24

Figure 6 CPU consumption by methods in the DIFF performance test for 300000 objects 24

Figure 7 DIFF performance test results – memory consumption .. 25

Figure 8 CPU usage, GC activity and Memory consumption of the DIFF performance test for 300000

objects ... 25

Figure 9 The context and the scope of the SDACP performance test case ... 28

Figure 10 Average processing time for insert operations in relation to the number of IoT objects batch

processed in parallel .. 30

Figure 11 Average processing time for update operations as the relation to the number of IoT objects

batch processed in parallel .. 30

 D6.3 - Auto-Discovery space deployment validation report 8

 - Public -

List of Definitions & Abbreviations

Abbreviation Definition

EC European Commission

CFP Call For Paper

D.A.R. Dissemination Activity Report

DC Direct Current

DG RTD Directorate-General for Research and Innovation

DIFF Difference (used by Agent’s state update operation)

DoA Description of Actions

EU European Union

H2020 Horizon 2020 Research and Innovation Programme

H-EMS Home Energy Management System

IoT Internet of Things

KPIs key performance indicators

NM Neighbourhood Manager

OPGW Optimal Power Ground Wire

P2P Peer to Peer

PMU Phasor Measurement Units

SDACP Semantic Discovery and Agent Configuration Platform

TD Thing Description

WP Work-Package

 D6.3 - Auto-Discovery space deployment validation report 9

 - Public -

1. Introduction

The deliverable describes the validation process and the results for the Auto-Discovery platform

deployment. Auto-discovery platform includes the Semantic Discovery and Agent Configuration Platform

at the server side, as well as, the VICINITY Agent at the client side of the VICINITY platform. Validation

process relies on data provided by the all the pilot cases, which were also used during the integration

testing in the task T6.2 “Lab setup, Testing & Validation”. It includes full functional test of the VICINITY

platform discovery process initiated by a locally deployed VICINITY node connected to the VICINITY

development environment3, performance of the Agent’s DIFF operation and the write/delete/query over

the semantic model performance. Functional test of the discovery process includes also scenarios with

unusual circumstances in order to detect performance limits of the current VICINITY prototype as it is

described in the deliverable D6.24.

1.1. Context within VICINITY

Figure 1 gives an overview of the context of D6.3 within VICINITY. D6.3 together with D6.1 and D6.2

contributes to reach Milestone 7 (MS7). MS7 - First integrated system prototype available - marks

the conduction of intensive integrated Lab testing for VICINITY prototype, with the use of the

VICINITY server components/services, client infrastructures and value-added services that were

made available by the previous milestones.

Requirements

Specification

WP1:

Platforms

Standards

WP2:

Client/Server

Implementation
WP3, 4:

Value-added

services

WP5:

WP2 - Tracking requirements, monitoring & contributing to standardization

WP 9, 10: Dissemination, Exploitation, Management, Open Calls

…

D1.X

Semantic model

MS1 MS2 MS3

(time)

D2.2

Integration and testingWP6:

Deployment and pilotsWP7:

Demonstration and evaluationWP8:

MS4

(updates)

(updates)

today
MS7

M36

Figure 1 Work Package Architecture

Regarding the relation to other WPs, the current document builds on the results of previous WPs and

tasks, specifically:

3 Development environment is used specifically for testing, while production environment is used for
deployment purposes.
4 VICINITY test-bed deployment, including Validation, Parameterization and Testing

 D6.3 - Auto-Discovery space deployment validation report 10

 - Public -

• WP1 – VICINITY Concept Requirements, Barriers, Specification, and Architecture

• WP3 – VICINITY Server Implementation (Task 3.2)

• WP4 – VICINITY Client Infrastructures Implementation (Task 4.2)

• WP5 – Value-Added Services implementation

The outcome of this deliverable will form the basis of work for the following WPs and tasks:

• WP3 - VICINITY Operation and continuous upgrades of core components (Task 3.3)

• WP4 - VICINITY Clients Operation and continuous upgrades (Task 4.4)

• WP7 – On-site Deployment and Pilot Installations (Tasks 7.2 – 7.5)

• WP8 – Pilot Demonstration and Overall Evaluation (Tasks 8.2 – 8.5)

1.2. Objectives in Work Package 6 and Task 6.3

The purpose of WP6 “VICINITY Framework Integration and Lab Testing” is to ensure that the VICINITY

platform operates correctly from a technical perspective, prior to its deployment at the pilot sites in WP7.

T6.1 “Integration of VICINITY Components” focusses on integrating the components that form server and

client infrastructures, along with the related value-added services to form the first version of the VICINITY

prototype. The layout and scope of the tests in T6.1 were decided based on pilot site definitions,

functional requirements, operational requirements and the VICINITY architecture as defined by WP1

“Requirements Specification” and the value-added services as defined by WP5 “Value-Added Services

Implementation”. The issues that were uncovered during the process are documented in the Issue

Tracking System that is used for this project-the Open Project- which is available to all partners, with the

status and context of individual issues. Evidence of the progress in solving these issues with cross-pilot

cooperation can also be found on the internal project website. Resolved issues resulted in new versions of

the software components, which were deployed after successful regression testing.

T6.2 “Lab setup, Testing & Validation” deals with two kinds of lab-testing. The first is Edge Cases Testing

to validate the expected prototype performance when the prototype is pushed close to its edges/limits

according to the requirements detailed in WP1. The second kind of lab testing focuses on functionality

and performance, including cross-domain testing scenarios, in line with value-added services defined in

WP5. The diagnosed problems during the lab-testing process were discussed and resolved by

collaboration among partners to improve and enrich the VICINITY prototype functionality.

T6.3 “Auto-discovery space deployment and validation” validates the auto-discovery platform and gives

the quality and performance feedback prior to deployment at the pilot sites. The auto-discovery platform

includes the VICINITY Agent at the client side, as well as the Semantic discovery and dynamic

configuration platform at the server side. The platform allows to perform the full semantic search of

object descriptions, so that existing objects can be easily discovered. IoT objects descriptions are used as

the core information for auto configuration of agents, through which these objects are available for

interaction. The validation was split into three main parts:

a. Functional test of the auto-discovery process provided by VICINITY Agent
b. DIFF operation and the write/delete/query over the semantic model performance
c. Performance test of the core VICINITY Agent task

 D6.3 - Auto-Discovery space deployment validation report 11

 - Public -

1.3. Structure of the Deliverable

Chapter 1: Introduction to the deliverable, and the context of the tasks in Vicinity. This section outlines

the role this document plays in the development process.

Chapter 2: Overall approach to testing.

Chapter 3: Test case 1 - Functional test of the auto-discovery process provided by VICINITY Agent.

Chapter 4: Test case 2 - DIFF performance.

Chapter 5: Test case 3 - SDACP performance.

Chapter 6: Quality and performance feedback.

Chapter 7: Conclusion.

 D6.3 - Auto-Discovery space deployment validation report 12

 - Public -

2. Approach

The test cases that are described in this deliverable come from the internal structure of the auto-

discovery platform that consist from cloud part and client side. The cloud part - the semantic discovery

and dynamic configuration platform is realized as two separate components - Semantic triplestore and

Semantic discovery and configuration services. The client-side component - VICINITY Agent - implements

the full discovery and configuration process.

The first test covers a functional test of the whole discovery process with utilization of all core

components of the VICINITY platform – including Agent, Gateway, Communication server, Neighbourhood

Manager and the Semantic discovery and dynamic configuration platform. The second test focuses on the

core functionality of the Agent’s discovery process itself – the DIFF operation. It is performed on the

current state defined by Adapters and persistent state stored in the semantic store. The third test case

then covers the cloud side of the auto-discovery platform and checks the performance of the

write/delete/query operations applied on the semantic model.

Based on the Edge Case Testing Methodology described in D6.2 VICINITY test-bed deployment, including

Validation, Parametrization and Testing (M36), additional edge testing cases are included - limit of

registrations from one adapter (considered also the size of the thing descriptions) and limit of

registrations from parallel adapters. They are designed to check some features of Gateway API by

considering the requirements and installation specifications envisioned in WP1. This enables to define a

stable and proper operating range for the VICINITY platform.

As in the testing process for D6.2, if either the testing results or the design behave unexpectedly, a bug

and a trace that leads to it are reported through Open Project, emails, Skype and Slack. Iterative tests

have been conducted to verify the solutions and solve the bugs.

The general structure for each testing case mainly includes a test scenario and goal, VICINITY

components/functions involved, equipment and testing environments, expected results, test procedure,

testing platforms, real results, deviations encountered from expected result and solutions.

2.1. Tested VICINITY Platform configuration

The tested VICINITY Platform configuration consists of the set of software components summarized in the

following table (Table 1), which were integrated together and verified by execution of the identified test

cases (Section 3 - 5).

Table 1 Tested VICINITY Platform configuration

Components Version

VICINITY Gateway API 0.6.3.1

VICINITY Agent 0.6.3.1

Neighborhood Manager 0.6.3

 D6.3 - Auto-Discovery space deployment validation report 13

 - Public -

2.2. Integration testing coverage

The VICINITY Platform interfaces have been directly and/or indirectly tested by individual testing cases

(described in Section 3 - 5) that are summarized in the following Table 2.

Table 2 VICINITY Interface integration test coverage

Name of Interface Used by Covered by test

VICINITY Neighbourhood Manager

Authentication service VICINITY Communication Node,

VICINITY Gateway API, VICINITY

Agent

Test1

Neighbourhood

discovery service

VICINITY Gateway API Services Test1

Registry service VICINITY Communication Server Test1

Semantic model change

notifications

Semantic Platform Test1

Semantic discovery and dynamic configuration agent platform

Semantic discovery

service

VICINITY Neighbourhood Manager Test1, Test3

Registry Service VICINITY Neighbourhood Manager Test1, Test3

VICINITY Gateway API Services

VICINITY Communication

server

Request/ Response Test1

VICINITY Communication Server

Discovery service VICINITY Gateway API Test1

VICINITY Node

Configuration Service

VICINITY Neighbourhood Manager Test1

Registry Service VICINITY Communication Node Test1

VICINITY Communication Node

VICINITY Node

Configuration Service

VICINITY Communication Server Test1

Registry Service VICINITY Communication Server Test1

VICINITY Gateway API

Discovery and query

service

VICINITY Agent/Adapter Test1

Consuming service VICINITY Agent/Adapter Test1

 D6.3 - Auto-Discovery space deployment validation report 14

 - Public -

Name of Interface Used by Covered by test

VICINITY Node

Configuration Service

VICINITY Agent/Adapter Test1

Registry Service VICINITY Agent/Adapter Test1

VICINITY Agent/ Adapter

VICINITY Node

Configuration Service

VICINITY Gateway API Test1

Exposing service VICINITY Gateway API Test1

2.3. Quality and performance measures

The validation will be based on a defined set of quality and performance measures. Quality is measured

by the set of functional tests that can be evaluated by the number of passed tests and coverage of the

tested functions. The performance is measured by means of metrics that are focused namely on the

scalability, entailing that they cover the overall processing time and consumption of computation

resources (memory, CPU).

Measured performance metrics for VICINITY Agent DIFF operation include:

• Number of generated DIFF IoT objects per second

• Number of generated DIFF statements per second

• Memory usage measured as the number of allocated objects of the given type and as the overall
size of the allocated heap memory in bytes

• CPU usage measured as the % of the CPU computation time

Measured performance metrics for SDCAP write/delete/query operations over the semantic model

include:

• Number of stored, updated or deleted IoT objects per second

• Number of stored, update or deleted triples per second

• Overall processing time for various type of SPARQL queries (normalized to the size of the result
sets in the number of IoT objects and triples)

• Memory usage measured as the number of allocated objects of the given type and as the overall
size of the allocated heap memory in bytes

• CPU usage measured as the % of the CPU computation time

All metrics were implemented and measured on one machine with the same configuration. Implemented

tests also check variations by running tests and measuring metrics multiple times.

 D6.3 - Auto-Discovery space deployment validation report 15

 - Public -

3. Test case 1 - Functional test of the auto-discovery process

provided by the VICINITY Agent

3.1. Testing objective

The main goal of this test case is to test the integration between all main components of the VICINITY

platform, from the VICINITY Agents in the changing environment up to the Neighbourhood Manager and

Semantic Discovery and Agent Configuration Platform (SDACP) that manages distributed global state of

the platform. All components involved in the process of auto-discovery should contribute to the

successful discovery process issued by Agent or Adapters at the client side. The current state of the IoT

platform connected to the VICINITY platform via Agent(s) & Adapter(s) should be correctly persisted in

the semantic repository inside SDACP. Semantically annotated discovered IoT objects should be also

visible via Neighbourhood Manager.

3.2. Testing scenario design

Table 3 Functional test of the auto-discovery process provided by the VICINITY Agent - testing scenario design

Test 1 Functional test of the auto-discovery process provided by the VICINITY Agent

Test ID Test 1_IS

Test name Functional test of the auto-discovery process provided by the VICINITY Agent

Test scenario and

goal
To test how the process of discovery of IoT objects is provided by VICINITY

Agent. Guarantee the discovery process has correct results accepted by the

VICINITY Neighbourhood Manager (NM).

Performed by Marek Paralič (IS)

Iterations The test will be conducted repeatedly in different conditions in relation to the

initial state of NM and VICINITY Adapters, which represent connected IoT

platforms of individual pilot cases.

Equipment,

environments and IoT

Infrastructure

involved

• Live connectivity to a running VICINITY solution that offers the VICINITY
Cloud including the NM and the Semantic Discovery and Agent
Configuration Platform (SDACP).

• One VICINITY Client Node that contains VICINITY Gateway (GW), VICINITY
Agent and VICINITY Adapters.

• VICINITY Adapters expose stubbed IoT objects.

Expected results • Query of NM state after the test returns result that contains expected
changes defined by the current state of the exposed IoT objects by the
Adapter.

• Each of IoT object registered by Adapter is registered also by NM.

• Each of by NM previously registered IoT object that is not anymore
available is removed from NM state.

• Each previously registered IoT object by NM that is still exposed by
Adapter is available in NM in appropriate state.

Test procedure Test procedure for one agent with 10 adapters:

 D6.3 - Auto-Discovery space deployment validation report 16

 - Public -

This test case emulates the changes in the environment where the IoT objects are added or removed, or

their properties are changed. All these changes are reflected by the change of the state of the VICINITY

adapters, which are then propagated in the platform by intermediate components such as VICINITY

Agents, VICINITY Gateway, Neighbourhood Manager, and stored in the SDACP. The most important

component in this scenario is the VICINITY Agent which detects the changes in the adapter’s

configuration, compares them with the current state stored in the platform and generates the updates

which are then forwarded to the SDACP. The proposed test case will:

a) Create controlled environment with the set of IoT objects each represented by the stub
implementation of the VICINITY adapter,

b) Emulate some structural changes in this environment (i.e. add/remove new adapter, change
adapter properties, etc.) and

• Adapters with representative Thing Descriptions (TDs) of individual pilot
sites IoT objects are started as passive and make available their state to
the VICINITY Agent via REST API.

• Agent retrieves current state of the Adapters and saves it for later
comparison.

• Agent retrieves current state of the NM.

• Agent compares current state of the Adapters with the state of the NM
and computes difference in form of list of CRUD operations over the NM
state.

• Agent sends a list of CRUD operations to the NM.

• The NM updates its internal policy state and send updates to the semantic
platform SDACP.

• The semantic platform SDACP commits the updates to the persistent
storage.

• Current state of the NM is retrieved and compared with the expected
state defined by the configuration of started Adapters.

Test procedure for getting the limit of max number of objects in one adapter:

• Configuration file for agent is generated with one adapter set to active
discovery mode

• Agent with generated configuration file is started

• Active adapter is started and based on number of objects and template
with TD to be used, generates POST request to agent with given number
of TDs

• The success or failure of the test is decided based on the status code of
the agent’s response

Test procedure for getting the limit of max number of adapters issuing parallel

requests to the agent:

• Configuration file for an agent is generated with given number of adapters
set to active discovery mode

• Agent with generated configuration file is started

• Given number of active adapters with 5 objects are started in separated
threads (in 1sec intervals) and generate POST request to the agent with 5
TDs

• Based on the status code of the agent’s response for every adapter the
success or failure of the test is decided

 D6.3 - Auto-Discovery space deployment validation report 17

 - Public -

c) Query the state of the SDACP through the Neighbourhood Manager in order to check if the
distributed state of the VICINITY platform was successfully updated.

3.3. Testing Platform

The test case is implemented relaying on a Java application, which setup the stub IoT objects and invoke

the local instance of the VICINITY Agent. Agent is connected to the testing VICINITY installation through

VICINITY Gateway that runs locally. The testing procedure covers the interaction between the

components shown in the following sequence diagram:

Figure 2 Interaction between the VICINITY components in the functional test of the auto-discovery process

1. Agent queries Adapter state (adapters are implemented as the stubs representing IoT objects and
configured in passive mode), the Agent will receive current state of the IoT environment and
persist it in json format.

2. Agent queries the current state of the VICINITY platform from the NM, which queries the state
from the SDACP. Communication is routed by GW. The Agent compares the current state of the
IoT environment and the VICINITY platform and generates the updates.

3. The updated state of the VICINITY platform is propagated through the GW and NM and stored
into the SDACP.

4. Client of the platform query the updated state from the NM, which fetch the current state from
the SDACP and persists it in JSON format.

Alternatively, the Adapter can initialize the communication asynchronously and notify Agent about the

changes of its state (this is denoted as a phase 1b). The rest of the test procedure is unchanged. Note that

only the Adapter is implemented as the mock-up that is not connected to the real IoT object. The rest of

the components are deployed in the testing cloud environment with the same configuration as the

production deployment of the platform.

Adapter Agent GW NM SDACP

 1b

2

3

4

 1a

 D6.3 - Auto-Discovery space deployment validation report 18

 - Public -

The following table summarizes the covered interactions, interfaces and operations of the use case visible

and used by the test. In the interactions, the first component initializes the communication.

Phase Interaction Interfaces Operations

1a – Query of the
adapter state

Agent – Adapter Adapter REST GET adapter_URL/objects

1b – Query of the
adapter state

Adapter – Agent Agent REST POST agent_URL/

4 – Query of update
state

Client – NM

NM – SDACP

NM REST GET
NM_URL/agents/{agentID}/items

In order to test the limits of the current implementation of the VICINITY platform, the test case 1 was

extended in the following way:

- Dynamic generation of Agent’s configuration file with defined number of adapters set to active
mode

- Dynamic generation of Adapter’s configuration file with defined number of objects based on a
given TD-template (pilot case specific)

- TD-templates for devices and value-added services specific for individual pilot cases

Tests are run directly from Java IDE, whereby type of test is defined by set of bool parameters of the main

test implementation class (AutoDiscoveryFunctionalTest.java):

updateTypeTest - if true, suppose previous run with value false - i.e.

itemsFromNMwithOIDs.json exists

cleanAgentAfterTest - if true, delete all items from agent

WINDOWS – if true, the test is executed under Windows OS

registrationLimitsTest – if true, just edge case limit testing is executed

The Test 1 is executed under assumptions that the VICINITY Gateway is up and running locally and the

VICINITY Agent is installed and accessible locally. The config file of the agent is not important, as far as the

test generates its config file according to the type of the test dynamically.

3.4. Testing Results

Table 4 Functional test of the auto-discovery process provided by the VICINITY Agent - testing results

Test 1 Functional test of the auto-discovery process provided by the VICINITY Agent

Real results

(figures)

• Agent starts up without failing, and then it successfully registers IoT objects from
10 Adapters in the VICINITY. Adapters are configured in a passive mode and their
stub implementations return to Agent between 20 and 30 thing descriptions of
IoT objects, i.e., devices or value-added services. The NM is configured to have an
empty list of devices for the given Agent. After the test the NM successfully

 D6.3 - Auto-Discovery space deployment validation report 19

 - Public -

registers altogether 266 devices and VASs for the given Agent.

• Execution of the given test with non-empty state of the NM for the given Agent
confirmed correct execution of the Agent’s PATCH operation. If the starting state
of the NM was 266 previously registered objects for the given Agent, execution of
the test should preserve this state what was checked and confirmed by not-
changed OIDs or registered objects.

• The result from series of testing the limits of successful registration of objects for
one adapter with relation to the size of their TDs is given on the following Figure
3:

Figure 3 Maximum number of successful registered IoT objects and its relation to the
size of their TDs

The tests proved that the current implementation with freely available semantic

triplestore in SDACP manages tens of objects from one adapter. If the thing

descriptions are a couple of kilobytes – like in the Gorenje devices oven and

refrigerator (each 7,5 kB), then the max number was 48. However, if the size

decreases to couple of hundreds of bytes – like in case of the door sensor from

TinyMesh (700B) – the max number slightly increases to value 66.

• • The series of testing the limits of successful registration of objects (from the
VICINITY Agent point of view) for adapters running in parallel gives as result 38
adapters with 5 objects each per one agent. However, this extreme testing case
scenario caused problem with storing the results in the VICINITY platform and
correct number of registered devices/VASs in the NM that will be further
investigated.

Deviations None.

Other

technical

issues

Testing scenario with parallel adapters caused problem with storing the results in the

VICINITY platform and correct number of registered objects in the NM that will be

further investigated.

Status Passed.

0
10
20
30
40
50
60
70

0
50000

100000
150000
200000
250000
300000
350000
400000

Maximum of successfully registered
objects by one adapter

Number of TDs Size of TDs in [B]

 D6.3 - Auto-Discovery space deployment validation report 20

 - Public -

Notes None.

 D6.3 - Auto-Discovery space deployment validation report 21

 - Public -

4. Test case 2 - DIFF performance

4.1. Testing objective

The goal of this test case is to measure the performance and scalability of the main VICINITY agent

functionality, i.e. detecting of the changes in the configuration of VICINITY adapters and updating the

global state of the platform propagated by the Neighbourhood Manager.

4.2. Testing scenario design

Table 5 DIFF performance - testing scenario design

Test 2 DIFF performance

Test ID Test 2_IS

Test name DIFF performance

Test scenario

and goal
To test the performance of the DIFF operation – IoT objects received from Adapter

versus IoT objects got from the NM.

Performed by Marek Paralič (IS)

Iterations Scenario is executed in iterations parametrized by the following parameters:

• Number of added IoT objects

• Number of removed IoT objects

• Total number of DIFF statements (including the changes of object parameters)

Equipment,

environments

and IoT

Infrastructure

involved

• Stub connectivity to the VICINITY NM

• Stub connectivity to one VICINITY Adapter exposing the changes in the
configuration of IoT objects

Expected results DIFF operations have expected performance and scalability measured by the specified

measures. Measured performance metrics for different combination of scenario

parameters include:

• Number of generated DIFF IoT objects per seconds

• Number of generated DIFF statements per seconds

• Memory and CPU usage

Test procedure The test procedure consists of the following steps:

1. Initialization of the NM and Adapter stubs
2. For each combination of scenario parameters:

a. Prepare expectations based on known state of the NM and the
Adapter

b. Execute DIFF operation and measure time needed
c. Compare results obtained by the DIFF operation with prepared

expectations in terms of:
i. DELETED objects

 D6.3 - Auto-Discovery space deployment validation report 22

 - Public -

The update of the platform state can be initiated by the VICINITY agent (i.e. after its initialization – for

passive adapters) or by an Adapter itself, which can notify the Agent about the changes of its internal

state (active adapters). In both cases, the Agent follows the same steps in order to update the global state

of the platform depicted in the following sequence diagram:

Figure 4 Agent’s steps to update the global state of the VICINITY platform

1. The Agent queries the current Adapter state (Agent queries the state of all adapters during the
startup. Alternatively, specific Adapter can notify the Agent about the changes sending its current
state)

2. The Agent queries the current state of the VICINITY platform from the NM (which subsequently
query state from the SDACP where the state is persistently stored)

3. The Agent generates updates of the state. Per each updated adapter, the Agent performs the
following operations:

a. Parse the global platform state and extract the persisted state of the adapter
b. Compare the current state of the adapter with the persisted and generates the updates

4. The Agent sends detected updates of the global state to the NM through the GW
5. The NM propagates updates to the SDACP persistent storage

This test case measures directly the performance of the VICINITY Agent and it is implemented as a java

application, which invokes internally the procedure described in the step 3. Particularly, the

communication with the Adapter or with the NM, or querying or updating of the state from the SDACP is

not covered by this test. The implementation uses generated inputs for updated states of the adapters

and for the actual global state of the platform. Test is scaled by the following parameters:

1. Number of updated statements per one adapter
2. Number of all objects of all adapters of the given access point in the global state

The main performance metrics include:

ii. CREATED objects
iii. UPDATED objects
iv. UNCHANGED objects

Adapter Agent GW NM

1

2

4 5

3

 D6.3 - Auto-Discovery space deployment validation report 23

 - Public -

1. Average time of execution
2. Memory consumption (average capacity, maximum peaks, garbage collector activity)

The results of the test are presented in the graphs shown below, which depicts the dependency between

the test parameters (i.e. number of changes and size of the global state) and measured metrics (time and

memory consumption). The expected scalability is linear with both parameters.

4.3. Testing Platform

As far as the test case focuses on the core functionality of the VICINITY Agent, the testing platform only

consists of the VICINITY agent version 0.6.3.1 and the code of the test itself. In the test scenario the

communication with the NM is stubbed as well as with the Adapter. The test is implemented as a java

application and deployed as jar file including the library of the Agent. Command to run the test is the

following:

 java -Xmx6000m -jar diff-test.jar 300000 150000 150000 150000 > /dev/null

The first parameter after diff-test.jar defines the number of IoT objects in the current state of the

NM. The following parameters define the current state of the adapter – so number of IoT objects to be

created, updated and deleted, resp. Parameter -Xmx increases the heap size of the running java

application – in order to manage creation of serialized form of the NM state (e.g. in this example the json

version of 300000 thing descriptions).

Logs with the results of the test are automatically saved into the defined file (DiffTestsLogs.txt), so

the standard output could be redirected in to /dev/null in order to shorten the test duration.

4.4. Testing Results

Table 6 DIFF performance – testing results

Test 2 DIFF performance

Real

results

(figures)

Charts showing the dependencies among the performance measures and the scenario

parameters.

 D6.3 - Auto-Discovery space deployment validation report 24

 - Public -

Figure 5 DIFF performance test results

The values at the x-axes in the Figure 5 in the form X/C/U/D have the following meaning – X

is number of IoT objects in the NM for the given agent and its adapter. C is number of IoT

objects to be created after the DIFF operation, U is number of the IoT objects to be updated

and D is number of IoT objects to be deleted in the NM. The sum (C + U) defines the current

state of the agent’s adapter in terms of number of IoT objects.

For the given tests the average value of generated DIFF IoT objects per seconds is 15349 and

the average value of generated DIFF statements per seconds is 11512.

The key functionality of the agent’s DIFF operation (methods in classes of the

sk.intersoft.vicinity.agent.service.config.processor package) participated

in the overall time of the test by approximately 26,5% as it can be observed from Figure 6.

Figure 6 CPU consumption by methods in the DIFF performance test for 300000 objects

0.000

20.000

40.000

60.000

80.000

100.000

120.000

0

5000

10000

15000

20000

25000

Agent's DIFF performance

Number of generated DIFF IoT objects per seconds

Number of generated DIFF statements per seconds

Total time in [s]

 D6.3 - Auto-Discovery space deployment validation report 25

 - Public -

Figure 7 DIFF performance test results – memory consumption

The memory consumption in terms of the utilized heap size is shown in Figure 7. More

details could be seen in Figure 8, where memory consumption of the DIFF performance test

with 300000 objects is reported. As it can be seen, the used heap is 3GB, however 60% of

that size are serialized form of the NM state in strings (char[]) used internally by the test

application as a part of the stubbing functionality.

Figure 8 CPU usage, GC activity and Memory consumption of the DIFF performance test for
300000 objects

0

2000

4000

6000

8000

10000

12000

Memory consumption [MB]

 D6.3 - Auto-Discovery space deployment validation report 26

 - Public -

Deviations None.

Other

technical

issues

None.

Status Passed.

Notes For every value at the x-axes in the Figure 5 the test for given combination X/C/U/D was run

10 times and total execution times for each case were computed as an average of execution

times of single tests.

 D6.3 - Auto-Discovery space deployment validation report 27

 - Public -

5. Test case 3 - SDACP performance

5.1. Testing objective

The goal of this test case is to measure performance and scalability of the SDACP component that

provides the main persistence storage for the global state of the platform and semantic interoperability

interfaces.

5.2. Testing scenario design

Table 7 SDACP performance – testing scenario design

The clients of the SDACP are the platform clients, who can query semantic information about the IoT

objects (things) on one side and the NM that integrates the running VICINITY agents on the other side.

The state of the agents is propagated by the GW and the NM up to the interface provided by the SDACP,

which then transforms the state updates into the triple store statements and update the global state of

Test 3 SDACP performance

Test ID Test 1_IS

Test name SDACP performance

Test scenario and

goal
To test the performance of the SDACP – write/delete/query over the semantic

model.

Performed by Peter Bednar (IS)

Iterations Scenario is executed in iterations parametrized by the following parameters:

• Number of NM clients

• Number of added statements

• Number of removed statements

• Set of test queries with the expected number of statements per
results

Equipment,

environments and IoT

Infrastructure

involved

• Stub connectivity to the VICINITY NM

• Testing instance of the SDACP

Expected results SDACP has expected performance and scalability measured by the specified

measures (see the description of the Real results)

Test procedure The test procedure consists of the following steps:

1. Initialization of the NM stubs and the SDACP instance
2. For each combination of scenario parameters execution of semantic

operations

 D6.3 - Auto-Discovery space deployment validation report 28

 - Public -

the platform in the semantic repository. The context and the scope of the test case is presented in the

following sequence diagram:

Figure 9 The context and the scope of the SDACP performance test case

1. Updates of the state of adapters are detected by the VICINITY Agents which generates updates
2. Updates are propagated to the SDACP through the GW and the NM. The NM is the only

component interacting directly with the SDACP
3. Clients of the platform can query semantic information about the IoT environment through the

standard semantic query interface (SPARQL entry point)

The case implements two scenarios:

1. It measures performance and scalability of update operations. This scenario is parametrized by
the number of update statements of different operations (i.e. create, update, delete) and the size
of the updated global state of the platform measured as the number of triples stored in the
semantic repository.

2. It measures performance and scalability of the query evaluations. This scenario is parametrized
by the set of test queries that can be received from the platform clients, the size of the global
state of the platform measured as the number of the triples and the size of the result sets per
each query.

In both scenarios, the main evaluation metric is the average execution time. Besides time, tests also

report memory consumptions for the SDACP service and the semantic repository and disk usage for the

semantic repository. The first scenario measures the time required for the batch uploading of the initial

global state into the semantic repository.

The results of the test are presented in the graphs showing the dependency between the test parameters

(i.e. number of changes and size of the global state) and measured metrics (i.e. time and memory

consumption). The expected scalability is linear with the combination of all parameters.

In the first scenario, execution time covers transformation of the update operations into the semantic

statements and updating of the semantic repository. The communication with the NM is not included, but

test covers local communication between the SDACP client code and the semantic repository used as the

NM SDACP

1

3

2

 D6.3 - Auto-Discovery space deployment validation report 29

 - Public -

SDACP persistence layer. In the second scenario, the test includes local communication between the

client and the SDACP semantic repository. Both scenarios are implemented as the unit tests connected to

the locally deployed semantic repository.

5.3. Testing Platform

The test was implemented as a Java console application. The main procedure loads the data from the pre-

generated JSON files and test of batch series of the insert, update, delete and query operations. The

insert, update, and delete operations are implemented directly as HTTP requests to the SDACP REST

service interface using the same client implemented in the NM. During the batch operations the main

measured metric was the execution time, including also the parsing end validation of the responses with

the status of the performed operations. Query operations were executed through the REST SPARQL

interface. Measured time of the queries include the request time and parsing of the result set JSON into

the object-oriented memory representation which allows the clients directly process the result data. All

operations were performed on the SDACP testing installation.

5.4. Testing Results

Table 8 SDACP performance – testing results

Test 3 SDACP performance

Real results The main metrics measured by the tests are the average processing time per IoT object

for insert, update, and delete operations, as well as, the average processing time for

queries. All tests were running locally on the testing instance of the SDACP prepopulated

with the around 460 000 triples.

The results for insert, update, and delete operations are presented in more details in the

following part. The tests measure how the SDACP reacts to the increasing number of IoT

objects in one batch, which is processed sequentially. The main result is that the

processing time is not changing significantly up to hundreds IoT objects per batch. For

testing we have used a set of IoT objects generated from two Gorenje devices

(refrigerator and oven). Since the size of the description (i.e. number of properties and

events, etc.) is roughly the same, average processing time per IoT object can be directly

compared to the number of generated triples in the semantic repository (approximately

140 per object).

The query testing was performed using the set of predefined queries in SPARQL. The

average processing type per query was 0.058 s to 0.0655 s. The main deviations between

queries were related to the number of triples in the result set. Complexity of the query

doesn't have major impact to the performance. From the profiling analysis, most of the

processing time is spend on communication over the HTTP and parsing of the results.

The internal evaluation of the query by underlying storage (GraphDB) doesn’t influence

the query processing so much.

Real results

(figures)

The following chart presents the dependency between the average times per IoT object

for the insert operation. The number of IoT objects generated in the batch insert is given

on the x axis. As it can be seen, the differences between the average processing times

for increasing number of IoT objects in batch is negligible (less than 0,0002 s compared

 D6.3 - Auto-Discovery space deployment validation report 30

 - Public -

to the previous case).

Figure 10 Average processing time for insert operations in relation to the number of IoT
objects batch processed in parallel

Similarly to inserts, the following chart presents dependency between the average

processing time and the number of IoT objects in batch operation for updates. The

differences are again very small and there is just minor increase of processing time for

larger batches.

Figure 11 Average processing time for update operations as the relation to the number
of IoT objects batch processed in parallel

The average time for the delete operations was around 0.02 seconds with the higher

variances, but again, the processing time is not changing dramatically when more

objects are deleted at the same time in one batch. However, although the processing

time is quite short, the main problem with the current setup was mutual blocking of

parallel delete operations, since the current installation of GraphDB can handle only two

parallel workers processing the client requests.

Deviations None.

Other

technical

Current development and testing installation of the SDACP is based on the free licensed

version of the GraphDB store, which is limited to two parallel client sessions. This setup

0.09078

0.090785

0.09079

0.090795

0.0908

0.090805

0.09081

20 40 60 80 100

0.0775

0.078

0.0785

0.079

0.0795

0.08

20 40 60 80 100

 D6.3 - Auto-Discovery space deployment validation report 31

 - Public -

issues can dramatically reduce scalability, which can be further enhanced by an unlimited

commercial version of GraphDB.

Status Passed.

Notes None.

 D6.3 - Auto-Discovery space deployment validation report 32

 - Public -

6. Quality and performance feedback

The proposed and realized test cases within the task T6.3 “VICINITY auto-discovery space deployment &

validation” that are described in this document proved that the VICINITY Auto-discovery platform is

deployable and fully functional. It provides necessary functionality required by pilot cases to achieve

interoperability at the semantic level. The test executions were performed using the data from individual

pilot cases in form of Thing Descriptions provided by VICINITY adapters.

Current implementation of the VICINITY Auto-Discovery platform suppose that all devices that should be

discovered, and whose descriptions will be inserted into the semantic triplestore by the VICINITY Agent

must be known by the Agent. It means that if a device should be part of the VICINITY platform, the

Vicinity adapters model5 should be extended. Technically speaking - core:Device subclass for device type,

core:Service subclass for service type and necessary sosa:Property instances should be added. VICINITY

Agent applies the IoT object description contract violation rules. Based on the experience from

deployments of the pilot cases the services for dynamic introducing of new types and adding new

instances should be considered.

Therefore, in this task we moved the focus from analysis of the behaviour of the Auto-Discovery platform

in case of unknown devices towards validation of the full discovery & registration process. The process

involves the VICINITY Agent at the client side and the Semantic Discovery and Agent Configuration

Platform (SDACP) at the server/cloud side.

The first test case, particularly its part that tested limits of current implementation in terms of

simultaneous registration of IoT objects by one or multiple adapters, opens a space for improvement of

the auto-discovery functionality. Direct reason, why no more than dozens of IoT objects could be

discovered and registered in single operation issued by one adapter or in parallel by multiple adapters

was communication time-out between VICINITY Gateway and VICINITY Agent. These timeouts are caused

by limitations of GraphDB Free store, enabling only two connections in parallel. This leads to the situation,

that execution time of large numbers of create/update/delete operations in the GraphDB takes too long

time. However, update to commercial, not limited GraphDB technology promises to improve the

triplestore performance. Currently, the implemented solution enables the implementation of proposed

pilot cases, but also represents a restriction in the scalability if large-scale pilots are considered. This

feedback is in line with results of the third test case that focused directly on the Semantic Discovery and

Agent Configuration Platform – services providing the functionality of the semantic store. Conveyed tests

clearly proved that freely available edition of the utilized Semantic graph database GraphDB used as

triplestore significantly restricts the performance of whole Auto-discovery platform. The limitation to two

requests in parallel practically prevents tests with higher loads and enables to confirm functionality of the

platform only at the size level of the VICINITY official pilot cases. If the precondition of free available

software could be abandoned, commercially available editions promised to remove such a restriction6.

Possibility to use one of the non-freely available editions in development and production environment of

the VICINITY platform should be analysed.

The second test case proved that the core functionality of the VICINITY Agent can manage significantly

higher load that it is generated by pilot cases of the VICINITY project. VICINITY Agent’s implementation of

the DIFF operation is ready to be used also by large-scale pilots without additional improvements.

5 http://iot.linkeddata.es/def/adapters/
6 https://www.ontotext.com/products/graphdb/editions/

http://iot.linkeddata.es/def/adapters/
https://www.ontotext.com/products/graphdb/editions/

 D6.3 - Auto-Discovery space deployment validation report 33

 - Public -

7. Conclusion

In order to validate the Auto-Discovery space deployment of the VICINITY platform three test cases were

designed, implemented, and repeatedly executed. On one hand the results of the tests clearly proved full

functionality of the Semantic Discovery and Agent Configuration Platform (SDACP) at the server/cloud

side together with the VICINITY Agent at the client/node side. On the other hand, they also made visible

the performance restrictions that come mainly from the use of the free available edition of the GraphDB

used as the semantic store in the SDACP.

Designed and implemented tests offer a framework for checking, if the future enhancement of the Auto-

Discovery platform implementation will improve the proposed and measured quality and performance

parameters.

	Executive Summary
	1. Introduction
	1.1. Context within VICINITY
	1.2. Objectives in Work Package 6 and Task 6.3
	1.3. Structure of the Deliverable

	2. Approach
	2.1. Tested VICINITY Platform configuration
	2.2. Integration testing coverage
	2.3. Quality and performance measures

	3. Test case 1 - Functional test of the auto-discovery process provided by the VICINITY Agent
	3.1. Testing objective
	3.2. Testing scenario design
	3.3. Testing Platform
	3.4. Testing Results

	4. Test case 2 - DIFF performance
	4.1. Testing objective
	4.2. Testing scenario design
	4.3. Testing Platform
	4.4. Testing Results

	5. Test case 3 - SDACP performance
	5.1. Testing objective
	5.2. Testing scenario design
	5.3. Testing Platform
	5.4. Testing Results

	6. Quality and performance feedback
	7. Conclusion

