
	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 1	

	

	
Public	

	

	

	
	

	

Project	Acronym:	 VICINITY	

Project	Full	Title:	 Open	virtual	neighbourhood	network	to	connect	intelligent	buildings	and	
smart	objects	

Grant	Agreement:	 688467	

Project	Duration:	 48	months	(01/01/2016	-	31/12/2019)	

	

Deliverable	D2.2	

Detailed	Specification	of	the	Semantic	Model		

	

Work	Package:		 WP2	–	Standardization	Analysis	and	VICINITY	platform	conformity	

Task(s):	 T2.2	–	Definition	of	VICINITY	semantic	model	as	extension	of	existing	IoT	
ontologies	

Lead	Beneficiary:	 UPM	

Due	Date:	 31	August	2017	(M20)	

Submission	Date:	 31	August	2017	(M20)	

Deliverable	Status:	 First	version	

Deliverable	Type:	 R	

Dissemination	Level:	 PU	

File	Name:	 VICINITY_D2.2_VICINITYSemanticModel_v1.0.pdf	
	 	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 2	

	

	
Public	

	

	

VICINITY	Consortium	
	

No	 Beneficiary	 	 Country	

1. 	 TU	Kaiserslautern	(Coordinator)	 UNIKL	 Germany	

2. 	 ATOS	SPAIN	SA	 ATOS	 Spain	

3. 	 Centre	for	Research	and	Technology	Hellas	 CERTH	 Greece	

4. 	 Aalborg	University		 AAU	 Denmark	

5. 	 GORENJE	GOSPODINJSKI	APARATI	D.D.	 GRN	 Slovenia	

6. 	 Hellenic	Telecommunications	Organization	S.A.	 OTE	 Greece	

7. 	 bAvenir	s.r.o.	 BVR	 Slovakia	

8. 	 Climate	Associates	Ltd		 CAL	 United	Kingdom	

9. 	 InterSoft	A.S.		 IS	 Slovakia	

10. 	 Universidad	Politécnica	de	Madrid	 UPM	 Spain	

11. 	 Gnomon	Informatics	S.A.	 GNOMON	 Greece	

12. 	 Tiny	Mesh	AS		 TINYM	 Norway	

13. 	 HAFENSTROM	AS		 HITS	 Norway	

14. 	 Enercoutim	–	Associação	Empresarial	de	Energia	Solar	de	
Alcoutim		

ENERC	 Portugal	

15. 	 Municipality	of	Pylaia-Hortiatis		 MPH	 Greece	

	

	

	

	

	

	

	 	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 3	

	

	
Public	

	

	

	

Authors	List	
	

Leading	Author	(Editor)	

Surname	 First	Name	 Beneficiary	 Contact	email	

García-Castro	 Raúl	 UPM	 rgarcia@fi.upm.es	

Co-authors	(in	alphabetic	order)	

No	 Surname	 First	Name	 Beneficiary	 Contact	email	

1. 	 Fernández-Izquierdo	 Alba	 UPM	 albafernandez@fi.upm.es	

2. 	 Heinz	 Christopher	 UNIKL	 heinz@cs.uni-kl.de	

3. 	 Kostelnik	 Peter	 IS	 peter.kostelnik@intersoft.sk	

4. 	 Poveda-Villalón	 María	 UPM	 mpoveda@fi.upm.es	

5. 	 Serena	 Fernando	 UPM	 fserena@fi.upm.es	

	

Reviewers	List	
	

List	of	Reviewers	(in	alphabetic	order)	

No	 Surname	 First	Name	 Beneficiary	 Contact	email	

1. 	 Oravec	 Viktor	 BVR	 viktor.oravec@bavenir.eu	

2. 	 Uwiringiyimana	 Marie	Madeleine	 UNIKL	 uwiringi@cs.uni-kl.de	

3. 	 Mach	 Marian	 IS	 Marian.Mach@tuke.sk	

	

	

	

	

	 	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 4	

	

	
Public	

	

	

Revision	Control	
	

Version	 Date	 Status	 Modifications	made	by	

0.1	 22.	02.2017	(M13)	 Initial	Draft	 María	Poveda-Villalón	(UPM)	

0.2	 03.	07.2017	(M19)	 First	Draft	formatted	with	
contributions	received		

María	Poveda-Villalón	(UPM)	

0.3	 19.	07.2017	(M19)	 Deliverable	version	for	final	
review	by	partners	

María	Poveda-Villalón	(UPM),		
Raúl	García-Castro	(UPM),		
Alba	Fernández-Izquierdo	
(UPM),		
Fernando	Serena	(UPM)	

0.4	 20.	07.2017	(M19)	 Added	chapter	2	 Christopher	Heinz	(UNIKL)	

0.5	 25.	07.2017	(M19)	 Deliverable	version	uploaded	for	
Quality	Check	

María	Poveda-Villalón	(UPM),		
Raúl	García-Castro	(UPM)	

0.6	 21.	08.2017	(M20)	 General	update	according	to	QAR	 María	Poveda-Villalón	(UPM),	
Alba	Fernández-Izquierdo	
(UPM)	

0.7	 22.	08.2017	(M20)	 Update	section	7	according	to	
QAR	

Peter	Kostelnik	(IS)	

0.8	 23.	08.2017	(M20)	 Update	section	2	according	to	
QAR	

Christopher	Heinz	(UNIKL)	

0.9	 24.	08.2017	(M20)	 Quality	Check	(changes	
integration)	

María	Poveda-Villalón	(UPM)	

0.10	 25.	08.2017	(M20)	 Final	Draft	reviewed	 María	Poveda-Villalón	(UPM),		
Viktor	Oravec	(BVR),		
Marie	Madeleine	
Uwiringiyimana	(UNIKL),		
Marian	Mach	(IS)	

1.0	 29.	08.2017	(M20)	 Submission	to	the	EC	 Carna	Radojicic	(UNIKL)	
	 	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 5	

	

	
Public	

	

	

Table	of	Contents	
1. Executive summary ... 10
2. Introduction .. 11
3. Relevant standard ontologies for VICINITY .. 13

3.1. W3C Semantic Sensor Network Ontology .. 13

3.2. ETSI Smart Appliances REFerence ontology ... 17

3.3. oneM2M Base Ontology ... 19

3.4. W3C Web of Things .. 22

3.5. Towards value-added services .. 24

3.6. Reused ontology elements in VICINITY network ... 26
4. Ontology development methodology .. 27

4.1. Ontological requirements specification ... 27

4.1.1. Purpose and scope identification ... 28

4.1.2. Data exchange identification ... 28

4.1.3. Ontological requirements proposal .. 29

4.1.4. Ontological requirements completion and validation ... 29

4.1.5. Ontological requirements prioritization .. 30

4.1.6. ORSD formalization .. 30

4.1.7. Ontological requirements formalization ... 30

4.2. Ontology implementation ... 31

4.2.1. Ontology conceptualization ... 31

4.2.2. Encoding .. 31

4.2.3. Evaluation .. 32

4.3. Ontology publication .. 32

4.3.1. Propose release candidate .. 33

4.3.2. Documentation .. 33

4.3.3. Online publication ... 34

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 6	

	

	
Public	

	

	

4.4. Ontology Maintenance ... 34

4.5. Experience with the described methodology ... 34
5. Ontology development infrastructure ... 35

5.1. Infrastructure for ontological requirements specification 35

5.2. Infrastructure for ontology implementation ... 37

5.3. Infrastructure for ontology publication .. 39

5.4. Infrastructure for ontology maintenance .. 41
6. Overview of the VICINITY ontology network ... 43

6.1. Web of Things ontology ... 48

6.2. VICINITY Core ontology ... 49

6.3. WoT Mappings ontology .. 55
7. Example of use of the VICINITY modules .. 59

7.1. Example 1: Data only .. 59

7.2. Example 2: Semantic Annotations .. 60

7.3. Example 3: More Capabilities .. 61

7.4. Example 4: Relative Endpoints .. 63

7.5. Example 5: Temperature sensor description ... 64

7.6. Example 6: Mappings for geo location ... 65

7.7. Example 7: Instantiation of IoT objects to enable the semantic discovery 67
8. Conclusions ... 72
References ... 73
Keywords ... 75

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 7	

	

	
Public	

	

	

Table	of	Tables	
Table 1. Mappings between SAREF and oneM2M classes. ... 22
Table 2. Mappings between SAREF and oneM2M properties. .. 22
Table 3. Reused elements from SSN and S4BLDG ontologies. .. 26
Table 4. Prefixes of reused ontologies and their corresponding namespaces. 45
Table 5. Overview of the ontology network requirements origin and current status. 46
	

Table	of	Figures	
Figure 1. Semantic Sensor Network (SSN) Ontology (Figure extracted from [3]). 14
Figure 2. Deployment, Platforms, System and Properties in SSN (Figure extracted from [3]). ... 15
Figure 3. The SOSA and SSN ontologies and their vertical and horizontal modules (Figure

extracted from [13]). ... 16
Figure 4. The current and envisioned modules of the SAREF ontology (Figure extracted from

[4]). ... 17
Figure 5. SAREF general overview (Figure extracted from [6]). ... 18
Figure 6. Excerpt of the SAREF4BLDG ontology overview (Figure based on [9]) 19
Figure 7. OneM2M Base Ontology (Figure extracted from [10]). .. 21
Figure 8. Things are implemented by a servient and communicate through their WoT Interface.

 .. 23
Figure 9. Top-level part of the DogOnt ontology (Figure extracted from [11]). 25
Figure 10. Services merged with DogOnt (Figure extracted from [11]). 26
Figure 11. Ontology development process. ... 27
Figure 12. Workflow proposed for ontology requirement specification. 28
Figure 13. Workflow proposed for ontology implementation.. 31
Figure 14. Workflow proposed for ontology publication. .. 33
Figure 15. VICINITY Core ontology requirements in a Google Spreadsheet. 35
Figure 16. VICINITY Core ontology requirements in an HTML document. 36
Figure 17. Examples of VICINITY Core ontology requirements formalized 37
Figure 18. OnToology folder structure. .. 38
Figure 19. Overview of VICINITY ontology portal. .. 40
Figure 20. Overview of the testing section of the VICINITY ontology portal. 41
Figure 21. GitHub issues related to the VICINITY Core ontology. ... 42
Figure 22. VICINITY ontology network portal. ... 43
Figure 23. VICINITY ontology network overview. ... 45
Figure 24. General overview of the WoT ontology. .. 49
Figure 25. General overview of the VICINITY Core ontology. ... 51
Figure 26. Device hierarchy for VICINITY use cases. ... 53
Figure 27. Hierarchy of properties and exemplary instances. .. 54
Figure 28. N-ary pattern to specify which property is monitored/affected about a specific

feature of interest. ... 55
Figure 29. Submodel used for describing sensor capabilities. ... 55
Figure 30. General overview of the VICINITY WoT Mappings ontology. 57
Figure 31. Example of a Thing interaction pattern from only data example. 60
Figure 32. Example of a Thing interaction pattern from data and semantics example. 61
Figure 33. Example of interaction patterns for a LED. .. 62
Figure 34. Example of relative endpoints. ... 63
Figure 35. Thermometer description example. .. 65
Figure 36. Mappings for geo coordinates example. ... 66
Figure 37. Translation of geo coordinates by using WoT mappings ontology example 67
	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 8	

	

	
Public	

	

	

Table	of	Listings	
Listing 1. LightBulb device in Common Thing Description Format. ... 69
Listing 2. Semantically lifted LightBulb device. ... 70
Listing 3. Illustration of the part of JSON-LD context. .. 70
Listing 4. Illustration of the IoT object description in Notation3. .. 71

	 	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 9	

	

	
Public	

	

	

List	of	Definitions	and	Abbreviations	
	

Abbreviation	 Definition	

API Application	Programming	Interface

DUL	 DOLCE	(Descriptive	Ontology	for	Linguistic	and	Cognitive	Engineering)	Ultra	
Light	

ETSI	 European	Telecommunications	Standards	Institute	

IG	 Interest	Group	

IoT	 Internet	of	Things

IRE	 Identifier,	Resource	and	Entity	

OGC	 Open	Geospatial	Consortium	

ORSD	 Ontology	Requirements	Specification	Document	

OWL	 Web	Ontology	Language	

RDF	 Resource	Description	Framework	

SAREF	 Smart	Appliances	REFerence	

SOSA	 Sensor,	Observation,	Sample,	and	Actuator	

SPARQL	 SPARQL	Protocol	and	RDF	Query	Language	(recursive	acronym)	

SSN	 Semantic	Sensor	Network	

WG	 Working	Group	

WoT		 Web	of	Things	

W3C	 World	Wide	Web	Consortium	
	

	

	

	

	

	 	

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 10	

	 	

	
Public	

	

	

1. Executive	summary	

The	present	document	 is	 the	deliverable	 “D2.2.	 -	Detailed	Specification	of	 the	Semantic	Model”	of	
the	VICINITY	 [18]	 project,	 funded	by	 the	 European	Commission’s	Directorate-General	 for	 Research	
and	Innovation	(DG	RTD),	under	its	Horizon	2020	Research	and	Innovation	Programme	(H2020).		

This	deliverable	gives	an	overview	and	documentation	of	the	VICINITY	ontology	network	as	of	August	
2017.	The	document	covers,	among	others,	the	following	main	topics:	

• Methodological	guidelines	and	recommendable	infrastructure	to	be	used	during	the	
ontology	development	process.		

• The	 VICINITY	 ontology	 network	 is	 presented	 in	 this	 deliverable	 including	 the	
description	of	the	modules	identified	as	a	need,	and	therefore	developed,	so	far:		

o Core	 ontology:	 this	 module	 is	 developed	 in	 order	 to	 represent	 the	
information	needed	to	exchange	IoT	descriptor	data	between	peers	through	
the	VICINITY	platform.	

o WoT	ontology:	 this	module	aims	at	 representing	how	and	where	things	can	
be	discovered	or	accessed	in	the	Web	of	Things	environment.	

o Wot	Mappings	ontology:	this	module	has	been	developed	within	VICINITY	in	
order	 to	 support	 the	 automatic	 data	 lifting	 process	 as	 described	 in	 “D3.3.	
Open	Interoperability	Gateway	API,	first	version”-.	Briefly,	mappings	explicitly	
define	 implicit	semantics	of	structured	data	exchanged	by	peers	 in	VICINITY.	
Moreover,	 the	Mappings	ontology	 supports	 the	description	of	mappings	 for	
data	that	may	come	from	external	web	things,	and	ultimately,	Web	resources	
made	available	through	heterogeneous	API	endpoints.	

• Examples	of	use	of	the	above-mentioned	modules.	

In	addition,	the	document	provides	an	overview	of	the	main	existing	standard	ontologies	that	cover	
similar	aspects	of	the	VICINITY	ontology	and	includes	some	conclusions	and	future	lines	of	work.	

	 	

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 11	

	 	

	
Public	

	

	

2. Introduction	

The	VICINITY	interoperability	approach	relies	on	ontologies	(i.e.,	semantic	data	models)	that	will	be	
exploited	 throughout	 the	 VICINITY	 infrastructure.	 In	 computer	 science,	 ontologies	 are	 defined	 as	
“formal,	 explicit	 specifications	of	 a	 shared	 conceptualization”	 [16].	 The	VICINITY	ontologies	will	 be	
formal	in	the	sense	of	following	Description	Logics	and	being	implemented	in	the	W3C	Web	Ontology	
Language	standard	OWL.1	The	conceptualization	to	be	shared	among	the	VICINITY	components	and	
plugged	systems	will	cover	different	domains	of	 interest	ranging	 from	horizontal	domains	 like	time	
and	space	to	specific	definitions	needed	within	the	VICINITY	ecosystem.	For	this	reason,	the	VICINITY	
approach	 is	 based	 on	 a	 modular	 ontology	 network	 in	 which	 existing	 standard	 ontologies	 will	 be	
reused	whenever	possible.	This	document	will	describe	the	process	followed	to	build	such	ontologies	
and	the	resulting	models	in	detail.	

The	goal	of	this	deliverable	is	to	detail	the	VICINITY	ontologies	developed	for	the	release	0.1	of	the	
VICINITY	platform.	This	decision	has	been	made	by	the	VICINITY	consortium	during	the	M13	plenary	
meeting.	That	is,	the	ontology	to	be	delivered	in	M20	should	cover	the	needs	for	the	platform	release	
0.1.	This	does	not	mean	that	the	ontology	is	version	0.1	(see	“D3.3.	Open	Interoperability	Gateway	
API,	 first	 version”)	 as	 it	will	 be	 later	 described.	 The	 scope	 of	 this	 deliverable	 is	 not	 limited	 to	 the	
description	 of	 the	 resulting	 ontologies;	 the	 processes	 followed	 and	 the	 infrastructure	 deployed	
during	 the	 ontology	 development	 are	 also	 explain.	 In	 addition,	 some	 standard	 ontologies	 are	
reviewed	and	examples	of	how	to	use	the	developed	VICINITY	ontology	are	provided.		

The	rest	of	this	deliverable	is	structured	as	follows:	

• Section	 3	 provides	 an	 overview	 of	 main	 standard	 ontologies	 related	 to	 the	 scope	 of	 the	
VICINITY	ontology	network.	

• Section	 4	 is	 devoted	 to	 the	 methodological	 guidelines	 followed	 during	 the	 ontology	
development.	

• Section	5	describes	the	infrastructure	deployed	during	the	ontology	development	process.	
• Section	6	 is	dedicated	to	the	description	of	the	VICINITY	ontology	network	and	each	of	the	

modules	developed,	namely	the	WoT	ontology	(Section	6.1),	the	Core	ontology	(Section	6.2),	
and	the	WoT	Mappings	ontology	(Section	6.3).	

• Section	 7	 includes	 a	 number	 of	 examples	 about	 how	 to	 use	 and	 instantiate	 the	 different	
modules	of	the	VICINITY	network.	

• Section	8	provides	some	conclusions	and	future	lines	of	work.	

For	 the	 sake	 of	 understandability	 of	 this	 document,	 readers	 not	 familiar	 with	 the	 concept	 of	
ontologies	 in	 computer	 science	 and	 the	 web	 might	 find	 the	 basis	 for	 this	 topic	 in	 the	 “Ontology	
Development	101:	A	Guide	 to	Creating	Your	First	Ontology”.2	In	addition,	 the	VICINITY	deliverables	

																																																								
1	https://www.w3.org/TR/owl-ref/		
2	http://www.ksl.stanford.edu/people/dlm/papers/ontology101/ontology101-noy-mcguinness.html	

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 12	

	 	

	
Public	

	

	

“D1.5.	VICINITY	technical	requirements	specification”	and	“D3.3.	Open	Interoperability	Gateway	API,	
first	version”	can	provide	background	knowledge	to	readers	about	the	project	and	the	relationship	
between	deliverables	and	outputs.	 	

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 13	

	 	

	
Public	

	

	

3. Relevant	standard	ontologies	for	VICINITY		

VICINITY	 aims	 to	 support	 IoT	 interoperability	 by	 developing	 a	 generic	 ontology,	 based	 on	 existing	
standards	 (from	W3C,	 ETSI,	 oneM2M,	 etc.),	 that	 can	 be	 used	 to	 interchange	 IoT	 data	 across	 the	
different	 components	 from	 the	VICINITY	platform	and	 the	different	 IoT	 infrastructures	used	 in	 the	
project.		

In	 line	 with	 what	 has	 been	 evaluated	 in	 “D2.1.	 “Analysis	 of	 Standardisation	 Context	 and	
Recommendations	for	Standards	Involvement”	–	so	far,	this	chapter	will	feature	an	overview	of	the	
standard	 ontologies	 that	 are	 most	 relevant	 to	 VICINITY;	 i.e.,	 this	 document	 will	 only	 present	
ontologies	that	have	been	developed	in	cooperation	with	standardization	bodies.		

Well	aware	that	the	following	will	not	capture	all	the	available	ontologies	that	have	been	developed	
for	the	IoT	so	far,	and	that	may	be	of	interest	to	VICINITY	when	new	ontology	requirements	arrive,	it	
is	 advisable	 to	 point	 interested	 readers	 to	 the	 LOV4IoT	 ontology	 catalogue3	for	 a	 more	 detailed	
overview	on	ongoing	activities	in	this	field.		

3.1. W3C	Semantic	Sensor	Network	Ontology		

The	Semantic	Sensor	Network	ontology	(also	known	as	“SSN”)	was	developed	by	the	W3C	Semantic	
Sensor	Network	Incubator	Group4	(SSN-XG).	The	purpose	of	this	OWL	ontology	is	to	describe	sensors,	
their	 capabilities	 and	 properties,	 the	 act	 of	 sensing	 itself	 and	 the	 resulting	 observations	 of	 the	
physical	world.	The	SSN-XG	was	working	from	March	2009	to	June	2011.	

It	was	agreed	upon	to	build	an	ontology	compatible,	but	not	constrained	by	OGC	standards,	such	as	
SensorML	 and	 Observations	 &	 Measurements	 (O&M).	 Furthermore,	 concepts	 are	 defined	 in	 a	
modular	architecture	and	as	broad	as	possible,	so	that	specific	interpretations	could	later	be	defined	
where	 necessary.	 Possible	 applications	 range	 from	 satellite	 imagery	 or	 large	 scale	 scientific	
monitoring	 to	 the	Web	 of	 Things5	(WoT).	 Figure	 1	 shows	 the	 resulting	 SSN	 ontology	 [3].	 The	 SSN	
ontology	 is	conceptually	organized	 into	ten	modules,	only	covering	concepts	and	relations	relevant	
to	 sensors,	 leaving	 concepts	 related	 to	 other,	 or	 multiple,	 domains	 to	 be	 included	 from	 other	
ontologies	when	the	ontology	is	used.	Doing	so	makes	the	ontology	modular	and	reusable.	Overall,	it	
consists	 of	 41	 concepts	 and	 39	 object	 properties.	 Since	 DOLCE-UltraLite	 (DUL	6)	 as	 a	 lightweight	
ontology	was	chosen	as	the	upper	ontology,	SSN	inherits	11	concepts	and	14	object	properties	from	
DUL.		

																																																								
3	http://sensormeasurement.appspot.com/?p=ontologies	
4	https://www.w3.org/2005/Incubator/ssn/XGR-ssn/		
5	https://www.w3.org/WoT/	
6 	http://ontologydesignpatterns.org/wiki/Ontology:DOLCE+DnS_Ultralite.	 For	 the	 ontology	 code	 see:	
http://www.ontologydesignpatterns.org/ont/dul/DUL.owl		

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 14	

	 	

	
Public	

	

	

The	 SSN	modules	 are	 represented	 by	 boxes	 in	 Figure	 1.	 Classes	 or	 concepts	 are	 represented	 by	
rounded	boxes.	Hierarchical	 relations	are	 represented	with	plain	arrows	 in	which	 the	origin	of	 the	
arrow	 represent	 the	more	 specific	 concept	 and	 the	 ending	 the	more	 general	 one.	 Finally,	 dashed	
arrows	represent	axiom	properties	defined	between	classes.	

	

Figure	1.	Semantic	Sensor	Network	(SSN)	Ontology		(Figure	extracted	from	[3]).	

Not	only	 is	SSN	able	to	describe	sensors	and	their	capabilities,	such	as	accuracy,	the	methods	used	
for	sensing,	operating	and	survival	ranges.	It	also	offers	means	to	describe	the	field	deployment	of	a	
sensor,	 including,	 e.g.,	 deployment	 lifetime	 or	 sensing	 purpose.	 Figure	 2	 shows	 these	 concepts	 in	
more	detail.	

	

SSO Pattern

Device

Deployment

PlatformSite

System

System

onPlatform only

hasSubsystem only, some
SurvivalRange

hasSurvivalRange only

OperatingRange
hasOperatingRange only

hasDeployment only
DeploymentRelatedProcess

Deployment

deploymentProcesPart only

deployedSystem only

Platform

deployedOnPlatform only

attachedSystem only

Device

Sensor

SensingDevice

Sensing
implements some

observes only

hasMeasurementCapability only

inDeployment only

Stimulus

detects only

isProxyFor onlyObservationValue

SensorOutputhasValue some

isProducedBy some

Process

Process

hasInput only

hasOutput only, some

Input

Output

Observation
observedBy only

featureOfInterest only

observationResult only

Property

observedProperty only
hasProperty only, some

isPropertyOf some

sensingMethodUsed only

includesEvent some

FeatureOfInterest

ConstraintBlock

Condition
inCondition only

MeasuringCapability

MeasurementCapability

forProperty only

OperatingRestriction

inCondition only

Data

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 15	

	 	

	
Public	

	

	

	

Figure	2.	Deployment,	Platforms,	System	and	Properties	in	SSN	(Figure	extracted	from	[3]).	

Modelling	 of	 concepts	 such	 as	 units	 of	 measurement,	 locations,	 hierarchies	 of	 sensor	 types,	 and	
feature	 and	property	 hierarchies	 is	 out	 of	 scope	of	 the	 SSN	ontology.	 The	 intention	was	 to	 create	
core	sensor	description	ontology,	which	can	be	easily	extended	with	specific	domain	concepts.	

The	 current	 version	 of	 the	 VICINITY	 ontology	 uses	 the	 SSN	 ontology	 to	 represent	 properties	
(ssn:Property)	 and	 features	 of	 interest	 (ssn:FeatureOfInterest).	 The	 SSN	 ontology	 is	
also	 used	 to	 represent	 device	 characteristics	 by	 means	 of	 specific	 types	 of	 properties	 such	 as	
capabilities	 (ssn:Capabitliy)	 and	measurement	 properties	 (ssn:MeasurementProperty,	
ssn:Frequency,	etc.).	

In	 December	 2014,	 a	 new	Working	Group	 started	 in	 the	W3C,	 the	 Spatial	 Data	 on	 the	Web	WG7,	
which	 had	 as	 one	 of	 its	 goals	 to	 further	 develop	 the	 SSN	 ontology	 and	 convert	 it	 into	 a	 formal	
recommendation	 (i.e.,	 standard).	 During	 the	 development,	 the	 Working	 Group	 has	 addressed	
different	 updates	 on	 the	 ontology:	 changes	 in	 the	 scope	 and	 audience	 of	 the	 ontology	 (switching	
from	ontology	 engineers	 to	 a	 broader	 scope	of	web	developers,	 resource-constrained	 IoT	devices,	

																																																								
7	https://www.w3.org/2015/spatial/	

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 16	

	 	

	
Public	

	

	

etc.),	updates	in	the	ontology	to	solve	different	shortcomings	identified	since	its	first	release,	use	of	
new	technical	developments	to	supports	lightweight	semantics.	

One	 of	 the	 major	 changes	 compared	 to	 the	 previous	 version	 of	 the	 ontology	 has	 been	 the	
modularization	 of	 the	 ontology,	 which	 now	 is	 composed	 of	 different	 separated	modules,	 and	 the	
alignment	 of	 such	modules	with	 other	 existing	 ontologies,	 as	 can	 be	 seen	 in	 Figure	 3.	 During	 this	
modularization	activity,	the	core	parts	of	the	SSN	ontology	have	been	separated	into	an	independent	
module,	 the	 Sensor,	Observation,	 Sample,	 and	Actuator	 (SOSA)	 ontology,	 that	 allows	 representing	
the	 main	 entities,	 relations,	 and	 activities	 involved	 in	 sensing,	 sampling,	 and	 actuation	 using	
lightweight	semantics.	

	

Figure	3.	The	SOSA	and	SSN	ontologies	and	their	vertical	and	horizontal	modules	(Figure	extracted	from	[13]).	

The	new	version	of	the	SSN	ontology	is	currently	not	being	used	in	the	VICINITY	ontology,	mainly	due	
to	 the	 need	 of	 reusing	 a	 stable	 version	 of	 the	 ontology	 in	 the	 VICINITY	 development.	 By	 the	
beginning	of	July	2017,	the	SSN	ontology	has	been	published	as	a	Candidate	Recommendation	at	the	
W3C8	[13]	 and	 it	 is	 expected	 to	 become	 a	 Recommendation	 by	 the	 end	 of	 September	 2017.	
Therefore,	 during	 the	 second	 half	 of	 2017	 one	 of	 the	 tasks	 to	 be	 performed	 over	 the	 VICINITY	
ontology	is	to	update	it	to	the	second	version	of	SSN	to	be	conformant	with	the	latest	standard.	No	
problem	 in	 this	 task	 is	 envisioned	 since	 the	 VICINITY	 partner	 Universidad	 Politécnica	 de	 Madrid	
(UPM)	 has	 been	 actively	working	 in	 the	 development	 of	 the	 (old	 and)	 new	 SSN	 ontology	 and	 the	
VICINITY	ontology	is	already	ready	for	the	migration.	

																																																								
8	https://www.w3.org/TR/2017/CR-vocab-ssn-20170711/	

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 17	

	 	

	
Public	

	

	

3.2. ETSI	Smart	Appliances	REFerence	ontology	

In	November	2015,	 the	 first	version	of	 the	Smart	Appliances	REFerence	ontology	 (SAREF)	 standard	
for	smart	appliances	was	published	by	ETSI	TC	SmartM2M	[5]	after	an	initial	standardization	initiative	
launched	by	the	European	Commission	DG	CONNECT	in	collaboration	with	ETSI	TC	SmartM2M.	This	
standard	 subsequently	 evolved	 into	 a	 new	 version	 published	 in	 March	 2017	 [6]	 and	 currently	
includes	 also	 three	 Technical	 Specifications	 that	 extend	 the	 SAREF	 ontology	 to	 three	 different	
domains,	 namely	 energy	 (SAREF4ENER	 [7]),	 environment	 (SAREF4ENVI	 [8]),	 and	 buildings	
(SAREF4BLDG	[9]).	The	current	and	envisioned	modules	of	the	SAREF	ontology	can	be	seen	in	Figure	
4.	

	

Figure	4.	The	current	and	envisioned	modules	of	the	SAREF	ontology	(Figure	extracted	from	[4]).	

The	 starting	 point	 of	 SAREF	 is	 the	 concept	 of	 Device;	 a	 Device	 is	 “a	 tangible	 object	 designed	 to	
accomplish	a	particular	function	in	households,	common	public	buildings	or	offices”	[6].	Devices	are	
for	example	a	light	switch,	a	temperature	sensor	or	a	washing	machine.	Figure	5	shows	an	overview	
of	 main	 classes	 and	 properties	 defined	 in	 the	 SAREF	 ontology.	 In	 such	 figure,	 concepts	 are	
represented	by	boxes	and	relationships	between	them	are	 indicated	by	means	of	 labelled	directed	
arrows.	Hierarchical	relationships	are	represented	by	arrows	with	a	white	triangle	ending.	

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 18	

	 	

	
Public	

	

	

	

Figure	5.	SAREF	general	overview	(Figure	extracted	from	[6]).	

The	SAREF	ontology	offers	a	list	of	basic	functions	that	can	be	eventually	combined	in	order	to	have	
more	complex	functions	in	a	single	device.	For	example,	a	switch	offers	an	actuating	function	of	type	
“switching	on/off”.	 Each	 function	has	 some	associated	commands,	which	 can	also	be	picked	up	as	
building	 blocks	 from	 a	 list.	 For	 example,	 the	 “switching	 on/off”	 is	 associated	with	 the	 commands	
“switch	on”,	“switch	off”	and	“toggle”.	Depending	on	the	function(s)	it	accomplishes,	a	device	can	be	
found	in	some	corresponding	states	that	are	also	listed	as	building	blocks.		

A	 Device	 offers	 a	 Service,	 which	 is	 a	 representation	 of	 a	 Function	 to	 a	 network	 that	 makes	 the	
function	 discoverable,	 registerable	 and	 remotely	 controllable	 by	 other	 devices	 in	 the	 network.	 A	
Service	can	represent	one	or	more	functions.	A	Service	is	offered	by	a	device	that	wants	(a	certain	set	
of)	 its	 function(s)	 to	 be	 discoverable,	 registerable,	 remotely	 controllable	 by	 other	 devices	 in	 the	
network.	 A	 Service	 must	 specify	 the	 device	 that	 is	 offering	 the	 service,	 the	 function(s)	 to	 be	
represented,	 and	 the	 (input	 and	output)	 parameters	 necessary	 to	 operate	 the	 service.	 A	Device	 is	
also	characterized	by	an	(Energy/Power)	Profile	that	can	be	used	to	optimize	the	energy	efficiency	in	
a	home	or	office	that	are	part	of	a	building.	

SAREF4BLDG	is	an	OWL	ontology	that	extends	SAREF	in	the	building	domain	in	order	to	represent	the	
devices	defined	in	the	IFC	(Industry	Foundation	Classes)	standard.9		

Figure	6	presents	an	overview	of	the	classes	(only	the	top	levels	of	the	hierarchy)	and	the	properties	
included	 in	 the	 SAREF4BLDG	 extension.	 As	 it	 can	 be	 observed	 the	 classes	 s4bldg:Building,	
s4bldg:BuindlingSpace	 and	 s4bldg:PhysicalObjects	 have	 been	 declared	 as	

																																																								
9	http://www.buildingsmart-tech.org/ifc/IFC4/Add1/html/	

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 19	

	 	

	
Public	

	

	

subclasses	of	the	class	geo:SpatialThing	 in	order	to	reuse	the	conceptualization	for	 locations	
already	 proposed	 by	 the	 geo	 ontology.	 The	modelling	 of	 building	 objects	 and	 building	 spaces	 are	
adapted	from	the	SAREF	ontology.	In	this	sense,	a	property	between	physical	objects	are	the	building	
space	 in	 which	 they	 are	 contained	 is	 defined,	 namely	 s4bldg:isContainedIn.	 Classes	 or	
concepts	are	represented	by	boxes.	Hierarchical	relations	are	represented	with	plain	arrows	in	which	
the	origin	of	 the	arrow	represent	the	more	specific	concept	and	the	ending	the	more	general	one.	
Finally,	dashed	arrows	represent	properties	expected	to	be	stated	between	the	classes	linked	by	such	
properties.	

	

	

Figure	6.	Excerpt	of	the	SAREF4BLDG	ontology	overview	(Figure	based	on	[9])	

The	 current	 version	of	 the	VICINITY	ontology	uses	 the	SAREF4BLDG	ontology	 to	 represent	building	
spaces	(s4bldg:BuildingSpace	and	s4bldg:isContainedIn).	It	is	worth	mentioning	that	
the	 VICINITY	 partner	 Universidad	 Politécnica	 de	 Madrid	 have	 been	 actively	 working	 in	 the	
development	of	the	second	version	of	the	SAREF	ontology	and	of	its	extensions.	

3.3. oneM2M	Base	Ontology	
Ontologies	 are	 used	 in	 oneM2M	 to	 provide	 syntactic	 and	 semantic	 interoperability	 of	 oneM2M	
systems	with	external	systems	[10].	These	external	systems	are	expected	to	be	described	by	domain	
specific	ontologies,	not	 subject	 to	oneM2M.	The	only	ontology	 that	 is	 specified	by	oneM2M	 is	 the	
oneM2M	Base	Ontology	 formalized	 in	OWL.	 The	 oneM2M	Base	Ontology	 is	 the	minimal	 ontology	
that	 is	 required	 such	 that	 other	 external	 ontologies	 can	 be	 mapped	 into	 oneM2M,	 e.g.,	 by	 sub-

Legend:

rdfs:subClassOfClass Reused Class

<<stereotype>>
object property
applicable to the
attached classes

BuildingSpace

hasSpace

saref:Device

BuildingDevice

BuildingObject

Building

geo:SpatialThinggeo:location

PhysicalObjectisSpaceOf

contains

isContainedIn

<<owl:inverseOf>> <<owl:inverseOf>>

geo:location

isSpaceOf

hasSpace

<<owl:inverseOf>>

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 20	

	 	

	
Public	

	

	

classing,	 equivalence,	 etc.	 These	 external	 ontologies	 can	 then	 bring	 domain	 knowledge	 into	 the	
oneM2M	implementation.	They	are	used	to	describe	real-world	“Things”	like,	e.g.,	buildings,	rooms	
or	 just	 a	 single	 lightbulb.	 The	 core	 of	 oneM2M	 ontology	 is	 illustrated	 in	 Figure	 7.	 In	 such	 figure,	
concepts	 are	 represented	 by	 ellipses	 and	 relationships	 between	 them	 are	 indicated	 by	 means	 of	
labelled	directed	arrows.	Hierarchical	relationships	are	represented	by	arrows	labelled	with	“is-a”.	

The	 Base	 Ontology	 has	 been	 designed	with	 the	 intent	 to	 provide	 a	minimal	 number	 of	 concepts,	
relations	 and	 restrictions	 that	 are	 necessary	 for	 semantic	 discovery	 of	 entities	 in	 the	 oneM2M	
System.	 To	make	 such	 entities	 discoverable	 in	 the	 oneM2M	 System	 they	 need	 to	 be	 semantically	
described	as	classes	(concepts)	in	a	-	technology/vendor/other-standard	specific	-	ontology	and	these	
classes	(concepts)	need	to	be	related	to	some	classes	of	the	Base	Ontology	as	sub-classes.	

Additionally,	the	Base	Ontology	enables	non-oneM2M	technologies	to	build	derived	ontologies	that	
describe	 the	data	model	of	 the	non-oneM2M	technology	 for	 the	purpose	of	 interworking	with	 the	
oneM2M	System.	

The	Base	Ontology	only	contains	Classes	and	Properties	but	not	instances	because	the	Base	Ontology	
and	derived	ontologies	are	used	 in	oneM2M	to	only	provide	a	 semantic	description	of	 the	entities	
they	contain.	Instantiation	(i.e.,	data	of	individual	entities	represented	in	the	oneM2M	System	-	e.g.,	
devices,	things,	etc.)	is	done	via	oneM2M	resources.	

The	 current	 version	 of	 the	 VICINITY	 ontology	 network	 does	 not	 fully	 cover	 some	 domains	 (e.g.,	
services	 or	 functions);	 however,	 it	 will	 be	 analysed	 how	 to	 reuse	 the	 oneM2M	 Base	 ontology	 in	
future	iterations	regarding	these	functionalities.	

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 21	

	 	

	
Public	

	

	

	

Figure	7.	OneM2M	Base	Ontology	(Figure	extracted	from	[10]).	

As	 indicated	 in	 Figure	 4,	 mappings	 between	 SAREF	 and	 oneM2M	 ontologies	 have	 been	 already	
defined,	more	precisely	they	are	documented	in	[6].	The	mappings	between	classes	are	represented	
in	Table	1	while	the	mappings	defined	between	properties	are	shown	in	Table	2.	

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 22	

	 	

	
Public	

	

	

	

SAREF	 Mapping	 oneM2M	

saref:Device	 owl:equivalentClass	 oneM2M:Device	

saref:Service	 owl:equivalentClass	 oneM2M:Service	

saref:Function	 owl:equivalentClass	 oneM2M:Function	

saref:SensingFunction	 owl:equivalentClass	 oneM2M:MeasuringFunction	

saref:ActuatingFunction	 owl:equivalentClass	 oneM2M:ControllingFunction	

saref:Command	 owl:equivalentClass	 oneM2M:Command	

Table	1.	Mappings	between	SAREF	and	oneM2M	classes.	

SAREF	 Mapping	 oneM2M	

saref:offers	 owl:equivalentProperty	 oneM2M:hasService	

saref:hasFunction	 owl:equivalentProperty	 	oneM2M:hasFunction	

saref:represents	 owl:equivalentProperty	 	oneM2M:exposesFunction	

saref:hasCommand	 owl:equivalentProperty	 	oneM2M:hasCommand	

saref:consistsOf	 owl:equivalentProperty	 	oneM2M:consistsOf	

Table	2.	Mappings	between	SAREF	and	oneM2M	properties.	

3.4. W3C	Web	of	Things	

The	Web	of	 Things	 (WoT)	 aims	 to	 bring	 real-world	 objects	 into	 the	World	Wide	Web,	 since	 these	
objects	(i.e.,	Things)	that	are	intended	for	everyday	life	and	have	little	or	no	computing	capability	are	
exposed	and	can	be	accessed	via	 the	Web	[14].	 In	order	 to	 further	 the	development	of	 intelligent,	
widely	 used	 applications	 through	 a	 common	 knowledge	 representation	 of	 Things	 to	 which	 the	
developers	 of	 the	 application	 can	 refer,	 the	WoT	provides	 a	 formal	 representation	of	 the	 physical	
knowledge	 in	 this	 domain. To	 facilitate	 the	 ubiquitous	 experience,	 it	 is	 necessary	 to	 link	 the	
discovery	and	 the	description	of	environmental	 issues	with	 the	knowledge	 in	 this	application	area.	
Actual	 formats	 of	 the	 descriptions	 can	 be	 application-dependent,	 although	 such	 descriptions	 of	
Things	already	exist	and	can	be	accessed	via	the	Internet. 	

An	 Interest	 Group	 of	 the	 W3C	 has	 been	 working	 actively	 on	 this	 topic	 since	 2014	 [1]	 and	 since	
January	 2017,	 started	 its	 activity	 as	 a	Working	 Group.	 In	 addition,	W3C	 has	 developed	 the	 terms	
“Thing	Description”	and	“Interaction”	as	the	main	points	of	the	WoT	resources.		

In	 the	WoT	 architecture,	 Things	 –	 physical	 or	 virtual	 –	 are	 represented	 by	 so-called	 “servients”	 as	
shown	in	Figure	8.		

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 23	

	 	

	
Public	

	

	

	

Figure	8.	Things	are	implemented	by	a	servient	and	communicate	through	their	WoT	Interface.10	

Servients	offer	a	WoT	Interface	for	communication;	i.e.,	a	web	API	following	the	recommendations	of	
the	WoT	IG.	 Information	on	Servients	and	their	 Interfaces	are	saved	as	a	“Thing	description”	about	
them.	This	Thing	Description	must	be	acquired	to	use	and	interact	with	the	Thing,	since	it	describes	
the	semantics	of	a	Thing	as	well	as	its	WoT	Interface.	

To	describe	“Things”,	the	use	of	the	IRE	(Identifier,	Resource,	Entity)	pattern	was	proposed.	The	IRE	
pattern	is	based	on	the	idea	that	web	resources	can	be	used	as	addressable	representation	for	real-
world	entities.	Websites	have	a	 resource	 ID	 (URI)	associated	with	 them.	Real	world	Entities	do	not	
have	an	URI.	Proxy	relationships	are	materialized	into	IRE	which	means	that	a	resource	 is	either	an	
informal	or	formal	proxy	[1].		

By	supporting	the	W3C	stakeholders	to	extend	the	Web	to	the	physical	world,	the	IRE	might	prove	to	
be	 important	 in	 designing	 the	 Web	 of	 Things. After	 a	 discussion,	 the	 group	 will	 concentrate	 on	
finding	a	definition	for	the	semantic	models	of	Things	and	their	abilities.		

The	UPM,	more	precisely	the	researchers	involved	in	the	VICINITY	project,	are	part	of	the	WoT	IG	and	
WoT	WG.	In	this	context,	the	WoT	ontology	is	being	formalized	in	the	OWL	ontology	language	within	
the	 VICINITY	 project	 taking	 as	 input	 the	W3C	 requirements	 (see	 Section	 6.1	 for	 more	 details).	 In	
addition,	such	WoT	ontology	has	been	taken	as	base	for	the	W3C	WoT	vocabulary.	For	more	details	
about	 the	 contribution	 of	 UPM	 in	 this	 standardization	 activity	 please	 see	 Annex	 A	 and	 B	 of	 the	
VICINITY	 deliverable	 “D2.1.	 “Analysis	 of	 Standardisation	 Context	 and	 Recommendations	 for	
Standards	Involvement”.	

																																																								
10	http://w3c.github.io/wot/current-practices/wot-practices.html	

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 24	

	 	

	
Public	

	

	

3.5. Towards	value-added	services	

In	 general,	 ontologies	 and	 standardization	approaches	 in	 the	 IoT	 can	be	 seen	 from	 three	different	
perspectives:	

1. A	Device-oriented	approach:	Here,	things	are	given	names	and	they	are	classified	according	
to	 their	 functionality.	A	device	 is	either	a	 light	 switch,	a	door-sensor,	an	actuator,	etc.	This	
approach	is	useful	to	give	an	abstract	structuring	and	classification	of	devices,	 independent	
of	the	application	or	domain.	

2. A	Scenario-based	approach:	Here,	use-cases	and	scenarios	are	defined.	To	handle	these	use-
cases,	 commands,	 such	 as,	 e.g.,	 “switch	 light	 on/off”	 are	 defined.	 This	 offers	 a	 clear	 path	
from	requirements	to	commands	and	is	hence	useful	in	terms	of	standardization.	

3. A	Service-oriented		approach:	Here,	the	focus	is	on	services	and	their	realization	in	order	to	
reach	a	specific	objective.	“Things”	are	classified	based	on	how	and	what	they	can	contribute	
in	order	to	reach	said	objective.	A	refrigerator	for	example	offers	a	“thermal/cooling	service”	
on	one	hand,	but	can	also	shift	its	energy	demand	in	order	to	contribute	to	an	energy	peak-
load	management.	

All	of	the	above	views	or	approaches	are	of	course	not	isolated	or	contradictory.	Instead	they	can	be	
combined	in	order	to	provide	more	meaningful	semantic	assets.	

In	earlier	work,	UNIKL	was	focusing	on	service-oriented	aspects	of	ontologies	towards	smart	energy	
management,	during	the	SmartCoDe	Project11.	As	an	example,	the	DogOnt	ontology	[1]	12	as	shown	
in	Figure	9	was	enhanced	with	a	service-oriented	view.	In	the	given	figures,	classes	or	concepts	are	
represented	 as	 ellipses.	 Relationships	 between	 them	 are	 indicated	 by	 labelled	 directed	 arrows.	
Hierarchical	 relationships	 are	 represented	 by	 dashed	 arrows.	 The	 colors	 are	 used	 to	 semantically	
group	classes.	Items	in	green	ellipses	represent	Things	in	the	building	domain	(physical	things),	while	
Item	in	orange	indicate	functionalities	and	ways	to	interact	with	things	(virtual	things).	

																																																								
11	https://www.fp7-smartcode.eu/	
12	https://github.com/iot-ontologies/dogont	

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 25	

	 	

	
Public	

	

	

	

Figure	9.	Top-level	part	of	the	DogOnt	ontology	(Figure	extracted	from	[11]).	

In	the	given	context,	services	could	be	seen	as	a	special	kind	of	functionality	a	Thing	offers.	A	Smart	
Service	 in	 this	 context	 is	 a	 functionality	 directed	 to	 reach	 a	 certain	 goal.	 	In	 contrast	 to	 a	 pure	
functionality,	 a	 Smart	 Service	 also	 includes	 the	 autonomous	 actions	 and	 decisions	 of	 a	 “smart	
appliance”.	

As	 an	 example	 for	 a	 Smart	 Service,	 during	 the	 SmartCoDe	 Project,	 Energy	Management	 was	 one	
particular	service	of	interest.	For	this	special	case,	Energy	Management	is	a	further	specialization	of	
the	Smart	Service	Class.	The	resulting	enhancement	is	shown	in	Figure	10	[11].	In	addition	to	Figure	
9,	this	shows	new	concepts	concerning	Services	of	Things,	indicated	by	red	ellipses.	

Once	Smart	Services	are	present	in	such	an	ontology,	they	can	also	be	connected	to	and	assigned	to	
Things.	 Using	 the	 resulting	 ontology	 one	 can	 easily	 search	 for	 devices	 that	 support	 a	 particular	
service	and	hence	quickly	realize	new	value-added	services.	

In	 the	VICINITY	project,	many	 such	value-added	 services	are	about	 to	be	developed.	Being	able	 to	
quickly	 find	matching	 devices,	 based	 on	 their	 contribution	 towards	 a	 particular	 goal	 will	 prove	 of	
great	value.	The	current	version	of	the	VICINITY	ontology	already	provides	the	link	between	devices	
and	the	services	they	offer;	future	versions	of	the	ontology	will	build	upon	such	a	view	as	well.	

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 26	

	 	

	
Public	

	

	

	

Figure	10.	Services	merged	with	DogOnt	(Figure	extracted	from	[11]).	

3.6. Reused	ontology	elements	in	VICINITY	network	

This	section	summarized	the	reused	elements	from	some	of	the	above	mentioned	ontologies	in	the	
current	version	of	the	VICINITY	ontology	network.	Table	3	includes	the	list	of	classes	and	properties	
reused	from	the	SSN	and	S4BLDG	ontologies.	

Ontology	 Classes	reused	 Properties	reused	

SSN	

Device	
SensingDevice	
FeatureOfInterest	
Property	
Condition	
MeasurementCapability	
MeasurementProperty	
OperatingProperty	
MaintenanceSchedule	
OperatingPowerRange	
OperatingRange	
SurvivalProperty	
BatteryLifetime	
SystemLifetime	
SurvivalRange	

forProperty	
isPropertyOf	
inCondition	
hasValue	
hasProperty	
hasMeasurementCapability	
hasMeasurementProoperty	
hasOperatingProperty	
hasOperatingRange	
hasSurvivalProperty	
hasSurvivalRange	
qualityOfObservation	

S4BLDG	 BuildingSpace	 isContainedInBuilding	

Table	3.	Reused	elements	from	SSN	and	S4BLDG	ontologies.	

	

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 27	

	 	

	
Public	

	

	

4. Ontology	development	methodology	

This	 section	 presents	 the	 ontology	 requirements	 specification,	 implementation,	 publication	 and	
maintenance	 processes	 defined	 for	 the	 VICINITY	 ontologies.	 The	 development	 methodology	
described	in	this	section	is	based	on	NeOn	methodology	[17].	The	aim	of	this	chapter	is	to	define	the	
processes	 to	be	carried	out	during	 the	ontology	development.	Figure	11	shows	an	overview	of	 the	
processes	that	have	to	be	performed	and	of	the	products	resultant	of	them.	

	

Figure	11.	Ontology	development	process.	

4.1. Ontological	requirements	specification	

The	aim	of	the	requirements	specification	process	is	to	state	why	the	ontology	is	being	built	and	to	
identify	 and	 define	 the	 requirements	 the	 ontology	 should	 fulfil.	 In	 this	 step,	 involvement	 and	
commitment	 by	 experts	 in	 the	 specific	 domain	 at	 hand	 is	 required	 to	 generate	 the	 appropriate	
industry	perspective	and	knowledge.	

The	activities	proposed	for	the	ontology	requirement	specification	process	are	shown	in	Figure	12.		

Ontological
requirements
specification

Ontology
implementation

Competency
questions

§ Ont. Devel.
§ Ont. Devel.
§ Users
§ Experts

Ontology
maintenance

Issue tracker

§ Ont. Devel.
§ Users
§ Experts

Ontology

Ontology
Publication

Online
ontology

§ Ont. Devel.

Legend Activity§ Actor Output activity	flow

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 28	

	 	

	
Public	

	

	

	

Figure	12.	Workflow	proposed	for	ontology	requirement	specification.	

4.1.1. Purpose	and	scope	identification	

The	goal	of	this	activity	is	to	define	the	purpose	and	scope	of	the	given	ontology	or	ontology	module.	
The	ontology	development	team	works	in	collaboration	with	users	and	domains	experts	to	define	the	
purpose	and	scope	of	each	ontology	or	module	to	be	developed.		

The	communication	between	 the	domain	experts,	users	and	ontology	development	 team	could	be	
carried	out	by	means	of	an	online	meeting.	

4.1.2. Data	exchange	identification	

The	 goal	 of	 this	 activity	 is	 to	 provide	 the	 ontology	 development	 team	 with	 the	 necessary	
documentation	 about	 the	 domain	 to	 be	 modelled.	 In	 this	 case,	 the	 documentation	 to	 be	 shared	
might	correspond	to:	

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 29	

	 	

	
Public	

	

	

• Manuals,	
• APIs	specifications,	
• Datasets,	
• Standards,	
• Formats.	

The	domain	experts	are	the	responsible	of	providing	this	documentation.	

4.1.3. Ontological	requirements	proposal	

Taking	 as	 input	 the	 documentation	 and	 data	 provided	 by	 domain	 experts	 and	 users,	 the	 ontology	
development	 team	 generates	 a	 first	 proposal	 of	 ontological	 requirements	 written	 in	 the	 form	 of	
Competency	Questions	[12].	

The	 format	 used	 for	 this	 proposal	 follows	 a	 tabular	 approach	 in	 which	 the	 following	 fields	 are	
included:	

• Requirement	identifier,	which	should	be	unique	for	each	requirement	
• Competency	question,	which	includes:	

o Question	
o Answer	

• Provenance	information,	which	includes:	
o Origin	of	the	requirement	

• Partners	(users	or	domain	experts)	related	to	the	definition	of	the	requirement	
• Comments	about	the	requirement	
• Relation	with	other	requirements	
• Priority	of	the	requirements,	which	can	be	high,	medium	or	low	
• Status	of	the	requirement,	which	can	be	proposed,	accepted,	rejected	or	superseded	by	
• Sprint	in	which	the	requirements	must	be	implemented	

4.1.4. Ontological	requirements	completion	and	validation		

During	this	activity	domain	experts	and	users	in	collaboration	with	the	ontology	development	team	
validate	whether	the	ontology	requirements	defined	in	the	previous	step	are	correct	and	complete.	

The	following	criteria	can	be	used	in	this	validation	task	as	stated	in	[12]:	

• A	set	of	requirements	is	correct	if	each	requirement	refers	to	some	features	of	the	ontology	
to	be	developed.	

• A	set	of	 requirements	can	be	considered	complete	 if	users	and	domain	experts	 review	the	
requirements	and	confirm	that	they	are	not	aware	of	additional	requirements.	

• A	set	of	 requirements	 can	be	considered	 internally	 consistent	 if	no	 conflicts	exist	between	
them.	

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 30	

	 	

	
Public	

	

	

• A	set	of	requirements	is	verifiable	if	there	is	a	finite	process	with	a	reasonable	cost	that	tests	
whether	the	final	ontology	satisfies	each	requirement.	

• Each	requirement	must	be	understandable	to	end-users	and	domain	experts.	
• An	ontology	 requirement	 is	unambiguous	 if	 it	 has	only	one	meaning;	 that	 is,	 if	 it	 does	not	

admit	any	doubt	or	misunderstanding.	
• A	set	of	requirements	is	concise	if	each	and	every	requirement	is	relevant,	and	no	duplicated	

or	irrelevant	requirements	exist.	
• A	set	of	requirements	is	realistic	if	each	and	every	requirement	meaning	makes	sense	in	the	

domain.	
• A	set	of	requirements	is	modifiable	if	its	structure	and	style	allow	changing	issues	in	an	easy,	

complete	and	consistent	way.	

4.1.5. Ontological	requirements	prioritization	

This	activity	will	be	performed	if	there	is	the	need	for	prioritizing	functional	requirements.	The	main	
implications	of	 this	prioritization	are	the	possibility	of	planning	and	scheduling	the	development	of	
the	 ontology	 in	 sprints.	 This	 prioritization	 would	 be	 present	 in	 the	 backlog	 driving	 therefore	 the	
ontology	development	process.	

To	 carry	 out	 this	 prioritization	 the	 ontology	 development	 team	works	with	 the	 domain	 experts	 to	
identify	 which	 requirements	 need	 to	 be	 fulfilled	 first.	 The	 communication	 between	 the	 domain	
experts	 and	 the	 ontology	 development	 team	 could	 be	 carried	 out	 by	 means	 of	 an	 on-line	 or	 in-
person	interview.	

4.1.6. ORSD	formalization	

Once	the	ontology	development	 team	has	all	 the	 information	about	 the	requirements,	 they	create	
the	Ontology	Requirements	 Specification	Document	 (ORSD).	 This	 specification	document	 stores	 all	
the	requirements	identified	and	the	information	associated	to	them.	

4.1.7. Ontological	requirements	formalization	

During	this	activity,	the	ontological	requirements	written	in	natural	language	are	formalized	into	test	
cases.	These	tests	cases,	which	are	stored	in	RDF	files,	should	include:	

• Identifier	of	the	requirement	associated,	
• Description	of	the	test	case,	which	includes	a	link	to	the	ORSD,	
• SPARQL	query	extracted	from	the	competency	question,	
• Expected	result	of	the	query.	

The	 goal	 of	 this	 activity	 is	 to	 create	 machine-readable	 test	 cases.	 These	 test	 cases	 have	 SPARQL	
queries	which	 can	be	executed	over	 the	ontology	 to	 verify	 if	 the	ontology	 satisfies	 the	ontological	
requirements	identified.		

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 31	

	 	

	
Public	

	

	

4.2. Ontology	implementation	

The	aim	of	 the	ontology	 implementation	process	 is	 to	build	 the	ontology	using	a	 formal	 language,	
based	on	the	ontological	requirements	identified	by	the	domain	experts.	After	defining	the	first	set	
of	 requirements,	 though	 modification	 and	 addition	 of	 requirements	 is	 allowed	 during	 the	
development,	 the	ontology	 implementation	phase	 is	 carried	out	 through	a	number	of	 sprints.	 The	
ontology	developers	schedule	and	plan	the	ontology	development	according	to	the	prioritization	of	
the	 requirements	 in	 the	 ontology	 requirements	 specification	 process.	 The	 ontology	 development	
team	builds	 the	ontology	 iteratively,	 implementing	only	 a	 certain	number	of	 requirements	 in	each	
iteration.	The	output	of	each	iteration	is	a	new	version	of	the	ontology.	

Figure	13	shows	the	activities	to	carry	out	during	the	ontology	implementation	for	each	iteration.	

	

Figure	13.	Workflow	proposed	for	ontology	implementation.	

4.2.1. Ontology	conceptualization	

The	aim	of	this	activity	is	to	build	an	ontology	model	from	the	ontological	requirements	identified	in	
the	 requirements	 specification	 process.	 During	 the	 ontology	 conceptualization,	 the	 domain	
knowledge	 obtained	 from	 the	 ORSD	 document	 is	 organized	 and	 structured	 into	 a	 model	 by	 the	
ontology	developers.	

4.2.2. Encoding	

During	 this	 activity,	 the	 ontology	 development	 team	 generates	 computable	models	 in	 the	 OWL	
language	from	the	ontology	model.		

The	 ontology	 code	 resultant	 from	 this	 activity	includes	metadata,	 such	 as	 creator,	 title,	 publisher,	
license	and	version	of	the	ontology.		

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 32	

	 	

	
Public	

	

	

It	 is	 worth	 noting	 that	 during	 the	 development	 of	 the	 VICINITY	 ontology	 the	 following	Ontology	
Versioning	convention	has	been	adopted:	

The	 versioning	 identification	 will	 be	 as	 similar	 as	 possible	 to	 the	 conventions	 used	 in	 software	
development.	 In	 this	 case,	 each	 release	will	 follow	 the	pattern	v.major.minor.fix,	where	 each	 field	
follows	the	rules:	

• major:	 The	 field	 is	 updated	when	 the	 ontology	 covers	 the	 complete	 domain	 it	 intends	 to	
model.	That	is,	it	is	a	complete	product	and	covers	the	final	goal	of	the	development.	

• minor:	The	field	is	updated	when:	
o all	the	requirements	of	a	subdomain	are	covered.		
o documentation	is	added	to	the	ontology.	

• fix:	The	field	is	updated	when:	
o typos	or	bugs	are	corrected	in	the	ontology.	
o classes,	 relationships,	 axioms,	 individuals	 or	 annotations	 are	 added,	 deleted	 or	

modified.	

In	each	iteration	the	minor	and	fix	fields	might	be	changed	from	zero	to	several	times.	

Each	 ontology	 developed	 under	 the	VICINITY	 ontology	 network	would	 follow	 its	 particular	 version	
status.	For	example,	the	mapping	ontology	might	be	in	version	v1.0.0	while	the	Core	ontology	might	
be	in	version	v0.2.3.	That	is,	the	network	evolution	is	not	managed	as	a	whole,	as	it	is	not	a	particular	
product	but	the	virtual	composition	of	many	ontologies	where	each	ontology	evolves	independently.	

4.2.3. Evaluation	

Before	publishing	a	release	version	of	the	ontology,	the	ontology	developers	evaluate	the	ontology	in	
different	aspects:	

• The	 ontology	 developers	 guarantee	 that	 the	 ontology	 does	 not	 have	 syntactic,	
modelling	or	semantic	errors.		

• The	 ontology	 developers	 guarantee	that	 the	 ontology	 fulfil	 the	 requirements	
scheduled	 for	 the	 ontology	 using	 the	 test	 cases	 generated	 in	 the	 requirements	
specification	process.	

4.3. Ontology	publication	

The	 aim	of	 the	 ontology	 publication	 process	 is	 to	 provide	 an	 online	 ontology	 accessible	 both	 as	 a	
human-readable	documentation	and	a	machine-readable	file	from	its	URI.	The	ontology	needs	to	be	
evaluated	before	its	publication	to	guarantee	that	is	ready	to	be	used.	

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 33	

	 	

	
Public	

	

	

	

Figure	14.	Workflow	proposed	for	ontology	publication.	

4.3.1. Propose	release	candidate	

Once	the	ontology	developers	have	implemented	and	validated	the	ontology,	they	propose	a	release	
version	of	the	ontology	to	be	published	on	the	Web:	

• In	 case	 the	 ontology	 fulfils	 all	 the	 requirements	 of	 a	 given	 subdomain,	 the	 ontology	
development	team	generates	a	release	version	of	 the	ontology,	e.g.,	 the	VICINITY	ontology	
for	release	0.1	is	tagged	as	“release	version	v0.1.X”.	

• In	 case	 the	 ontology	 does	 not	 implement	 all	 the	 ontological	 requirements	 identified,	 only	
those	scheduled	 for	 the	 iteration,	 the	ontology	development	 team	generates	a	pre-release	
version	of	the	ontology.		

Both	release	and	pre-release	versions	of	the	ontologies	are	evaluated	and	ready	to	be	used.	

4.3.2. Documentation	

Taking	as	input	the	ontology	generated	in	the	previous	activities,	the	ontology	development	team	in	
collaboration	 with	 the	 domain	 experts	 generates	 the	 ontology	 documentation	 of	 the	 release	
candidate.	This	documentation	includes:	

• An	 HTML	 description	 of	 the	 ontology	 which	 describes	 the	 classes,	 properties	 and	 data	
properties	 of	 the	 ontology,	 and	 the	 license	 URI	 and	 title	 being	 used.	 The	 domain	 experts	
have	 to	 collaborate	with	 the	 ontology	 development	 team	 to	 describe	 the	 classes	 and	 the	
properties.	 This	 description	 also	 includes	 metadata,	 such	 as	 creator,	 publisher,	 date	 of	
creation,	last	modification	or	version	number.	

• Diagrams	which	store	the	graphical	representation	of	the	ontology,	including	taxonomy	and	
class	diagrams.		

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 34	

	 	

	
Public	

	

	

4.3.3. Online	publication	

Once	the	documentation	of	the	ontology	has	been	generated,	the	ontology	is	published	on	the	Web.	
This	 online	 ontology	is	 accessible	 via	 its	 namespace	 URI	 as	 a	machine-readable	 file	 and	 a	 human-
readable	documentation	using	content	negotiation.		

4.4. Ontology	Maintenance	

The	 goal	 of	 this	 activity	 is	 to	 update	 and	 add	 new	 requirements	 to	 the	 ontology	 that	 are	 not	
identified	in	the	ORSD	or	to	identify	and	corrects	errors	or	to	schedule	a	new	iteration	for	ontology	
development.	 During	 the	 ontology	 development	 process,	 the	 domain	 experts	 can	 propose	 new	
requirements	 or	 improvements	 over	 the	 ontology.	 If	 these	 requirements	 or	 improvements	 are	
approved	by	the	ontology	development	team,	they	are	added	to	the	ontology.	

4.5. Experience	with	the	described	methodology	

After	developing	 the	VICINITY	ontologies	 following	 the	described	methodology	we	conclude	 that	 it	
helps	us	to	manage	the	ontology	development	efficiently	in	all	the	development	processes.	

Regarding	the	requirements	specification	process,	having	the	ORSD	structured	help	us	to	define	the	
requirements	 and	 to	 identify	 its	 information	 associated,	 e.g.	 provenance	 or	 additional	 comments	
which	allow	the	developers	to	 improve	the	understanding	of	the	requirements.	However,	while	we	
were	developing	the	ontologies	we	refined	the	structure	of	the	ORSD.	This	refinement	included	the	
deletion	of	the	field	“Project	Task”,	because	we	did	not	make	use	of	it	during	the	development	of	the	
ontologies,	and	the	addition	of	the	field	“Superseded	by”,	because	some	of	the	requirements	evolve	
during	 the	 development	 and	 instead	 of	 changing	 them	 we	 have	 decided	 to	 indicate	 that	 these	
requirements	are	deprecated.			

It	is	worth	noting	that,	although	the	majority	of	these	processes	are	stable	and	already	used	in	other	
projects,	 as	 they	 are	 extracted	 from	 NeOn	 Project 13 ,	 the	 step	 “Ontological	 requirements	
formalization”	 is	 still	 an	 experimental	 step	 we	 added	 to	 verify	 if	 the	 ontology	 fulfils	 all	 the	
requirements	defined	in	the	ORSD.	We	are	trying	to	analyze	if	all	the	ontological	requirements	can	be	
represented	as	SPARQL	queries.		

	

																																																								
13	http://www.neon-project.org/nw/Welcome_to_the_NeOn_Project	

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 35	

	 	

	
Public	

	

	

5. Ontology	development	infrastructure	

In	 this	 section	 the	 ontology	 development	 infrastructure	 used	 to	 support	 all	 the	 activities	 in	 the	
ontology	development	process	is	described.	

5.1. Infrastructure	for	ontological	requirements	specification	

To	 support	 the	 ontology	 requirements	 specification	 phase,	 the	 ontology	 developers	 use	 Google	
Spreadsheets	 to	 gather	 and	 store	 the	 requirements.	 These	 spreadsheets	 are	 associated	 to	 the	
VICINITY	ontologies,	published	online	and	openly	accessible.	

Each	ontology	has	a	different	spreadsheet	associated.	The	name	of	the	sheet	indicates	the	ontology	
to	which	the	requirements	belong	to	and	the	GitHub	repository	in	which	the	ontology	is	stored,	e.g.,	
the	 tab	 named	 “WoT(mariapoveda/wot-ontology)”	 stores	 the	 requirements	 of	 the	Web	 of	 Things	
ontology,	with	 the	 associated	 repository	 https://github.com/mariapoveda/wot-ontology.	 Figure	 15	
shows	an	excerpt	from	the	requirements	stored	for	the	VICINITY	ontology	model.		

	

Figure	15.	VICINITY	Core	ontology	requirements	in	a	Google	Spreadsheet.	

These	Google	Spreadsheets	are	converted	to	an	HTML	file	with	the	most	relevant	information	for	the	
users	to	facilitate	visualization.	Figure	16	shows	an	excerpt	from	the	HTML	document	generated	from	
the	requirements	of	the	VICINITY	ontology	model.		

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 36	

	 	

	
Public	

	

	

	

	

Figure	16.	VICINITY	Core	ontology	requirements	in	an	HTML	document.	

Regarding	the	ontological	 requirements	 formalization,	an	RDF	file	where	the	test	cases	are	store	 is	
created.	 Each	 test	 case	 follows	 the	 same	 structure.	 Figure	 16	 shows	 an	 excerpt	 of	 the	 test	 cases	
generated	for	VICINITY	Core	ontology.	

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 37	

	 	

	
Public	

	

	

	

Figure	17.	Examples	of	VICINITY	Core	ontology	requirements	formalized	

5.2. Infrastructure	for	ontology	implementation	

To	 support	 the	ontology	 implementation	phase,	 the	ontology	developers	use	 several	 tools	 to	edit,	
store	and	evaluate	the	ontology.	

The	ontology	development	team	uses	an	ontology	editor,	such	as	Protégé,	to	generate	the	ontology	
code.	 Protégé	 allows	 the	 creation,	 visualization	 and	 manipulation	 of	 ontologies	 in	 various	
representation	formats.	

As	solution	for	ontology	storage,	each	VICINITY	ontology	 is	stored	 in	a	GitHub	repository.	For	each	
ontology,	its	GitHub	repository	includes:	

• A	folder	with	the	implementation	of	the	ontology.	
• A	folder	with	the	ontology	modelling	diagrams.	
• A	folder	with	the	documentation	of	the	ontology.	

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 38	

	 	

	
Public	

	

	

• A	folder	with	the	tests	generated	from	the	ontological	requirements.	

The	 ontology	 developers	may	 use	 the	 GitHub	 or	 Git	 proposed	workflow	 to	 develop	 the	 ontology,	
which	can	be	summarized	in	the	next	steps:	

1. Create	a	new	branch	from	the	master	branch.	
2. Add	 changes	 to	 the	ontology	 and	 commit	 them.	 Each	 commit	 has	 to	 be	 associated	with	 a	

commit	message,	which	is	a	description	explaining	why	a	particular	change	was	made.	
3. Open	a	pull	request	to	start	a	discussion	over	the	changes.	
4. If	the	pull	request	is	approved,	merge	the	new	branch	into	the	master	branch.	

The	 development	 team	 uses	 OnToology14	to	 generate	 the	 documentation	 and	 to	 evaluate	 the	
ontology.	 OnToology,	 which	 integrates	 Widoco 15 ,	 OOPS!	 [15] 16 	and	 AR2DTool 17 ,	 generates	
automatically	 a	 folder	 in	 the	 GitHub	 repository	 which	 includes	 all	 the	 resources:	 diagrams,	
documentation	and	evaluation	report.	

The	 structure	 of	 the	 folders	 generated	 by	 OnToology	 for	 each	 ontology	 contained	 in	 the	 Github	
repository	is	represented	in	Figure	18:	

	

Figure	18.	OnToology	folder	structure.	

	

																																																								
14	http://ontoology.linkeddata.es/	
15	https://github.com/dgarijo/Widoco/	
16	http://oops.linkeddata.es/	
17	https://github.com/idafensp/ar2dtool	

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 39	

	 	

	
Public	

	

	

The	documentation	of	the	ontology	is	generated	using	Widoco,	which	provides	a	description	of	the	
classes	that	must	be	completed	by	the	domain	experts.	The	diagrams	of	the	ontology	are	generated	
using	AR2DTool,	which	 includes	both	 taxonomy	and	entity	 relationship	diagrams.	The	evaluation	 is	
provided	 by	 OOPS!,	 which	 detects	 the	 most	 common	 pitfalls	 that	 appear	 when	 developing	
ontologies.	All	the	resources	generated	by	OnToology	are	updated	whenever	there	is	an	alteration	in	
the	repository.	

Besides	this	documentation	and	evaluation,	whenever	there	is	a	pull	request	in	the	GitHub	repository	
over	 the	 ontology	 the	 SPARQL	 queries	 of	 the	 test	 cases	 are	 executed.	 GitHub	 will	 inform	 the	
developer	by	means	of	a	message	in	the	pull	request	if	there	are	some	queries	which	do	not	provide	
the	 expected	 result	 indicated	 in	 the	 test	 cases.	 If	 this	 occurs,	 it	 means	 that	 there	 are	 some	
requirements	which	are	not	fulfilled	by	the	ontology.		

5.3. Infrastructure	for	ontology	publication	

To	support	 the	ontology	publication	phase,	 the	ontology	developers	publish	 the	ontology	online	to	
be	accessible	to	everyone	and	they	also	publish	the	releases	 in	the	the	online	VICINITY	ontologies	
portal18.	The	ontology	development	team	publishes	the	releases	of	the	ontologies	in	to	such	portal	to	
make	the	ontology	and	its	documentation	accessible	to	all	the	users.	The	portal	has	different	sections	
to	provide	different	information,	namely:	

1. Ontologies	
2. Good	practices	
3. Ontology	testing	

The	Ontologies	 section	 is	 the	main	 section	of	 the	portal,	which	 shows	 the	main	 information	about	
the	ontologies	created.	The	section	follows	a	tabular	approach	which	includes:	

§ Link	 to	 the	 ontology	 documentation	 published	 on	 the	 Web,	 which	 is	 generated	 by	
Widoco;	

§ Link	to	the	ontology	evaluation	generated	by	OOPS!;	
§ Ontology	description;	
§ Link	to	each	Github	repository;	
§ Links	to	each	GitHub	issue	tracker;	
§ HTML	description	of	the	requirements	identified	by	the	domain	experts;	
§ Link	to	each	ontology	releases.	

Figure	19	shows	an	overview	of	the	information	exposed	in	the	VICINITY	ontology	portal.	

																																																								
18	http://vicinity.iot.linkeddata.es	

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 40	

	 	

	
Public	

	

	

	

Figure	19.	Overview	of	VICINITY	ontology	portal.	

This	 section	 of	 the	 portal	 includes	 a	 diagram	 which	 reflects	 the	 main	 concepts	 of	 each	 ontology	
and	how	they	are	related	with	each	other,	as	it	will	be	further	described	in	Section	6.	

Regarding	 the	 good	 practices	 section,	 the	 portal	 also	 provides	 the	 users	 a	 brief	 overview	 of	 the	
proposed	process	for	developing	ontologies	and	some	guidelines19,	which	should	be	followed	by	the	
domain	experts	and	ontology	developers	who	wants	to	contribute.	This	section	includes	information	
about:	

§ How	the	repository	should	be	structured;	
§ The	tools	recommended	to	be	used	during	the	ontology	development	process;	
§ Ontology	versioning;	
§ Issues	management.	

Finally,	 the	VICINITY	ontology	portal	 also	has	an	ontology	 testing	 section20	which	 follows	a	 tabular	
approach	and	includes:		

§ The	link	to	the	ontology	published	on	the	Web;	

																																																								
19	http://vicinity.iot.linkeddata.es/vicinity/howwework.html	
20	http://vicinity.iot.linkeddata.es/vicinity/testing.html	

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 41	

	 	

	
Public	

	

	

§ The	tests	generated	to	verify	the	ontology	requirements;	
§ An	HTML	file	with	the	description	of	the	ontological	requirements	and	the	results	of	the	tests	

for	each	requirement;	
§ The	status	of	each	ontology	regarding	its	compliance	with	the	requirements;	
§ The	problem	identified	according	to	the	tests,	if	exists.	

An	example	of	testing	results	for	the	VICINITY	ontologies	is	shown	in	Figure	20.	

	

Figure	20.	Overview	of	the	testing	section	of	the	VICINITY	ontology	portal.	

5.4. Infrastructure	for	ontology	maintenance	

To	 support	 the	maintenance	 of	 the	 ontology,	 the	 ontology	 developers	 use	 an	 issue	 tracker	which	
manages	and	maintain	the	list	of	issues	identified	by	the	domain	experts	and	ontology	developers.	

All	 the	 changes	 and	 improvements	 over	 the	 ontology	 need	 to	 be	 agreed	 by	 all	 the	 ontology	
development	team.	The	GitHub	issue	tracker21	is	used	to	discuss	improvements	and	issues	about	the	
domains.	If	domain	experts	or	ontology	developers	want	to	add	new	concepts	to	the	ontology	they	
have	to	create	a	new	issue	in	the	GitHub	issue	tracker,	which	will	be	used	to	start	a	discussion	about	
the	approval	of	the	proposal.		

																																																								
21	https://help.github.com/articles/about-issues/	

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 42	

	 	

	
Public	

	

	

GitHub	issues	will	be	marked	as	“open”	and	“closed”.	The	issues	can	also	have	an	assignee	which	is	
the	person	that	is	responsible	for	moving	the	issue	forward.	Figure	21	shows	the	list	of	the	opened	
issues	associated	to	the	VICINITY	Core	ontology.	

	

Figure	21.	GitHub	issues	related	to	the	VICINITY	Core	ontology.	

The	ontology	developers	should	label	each	issue	according	to	its	topic	or	status	in	order	to	organize	
the	 different	 types	 of	 issues.	 GitHub	 comes	 with	 a	 few	 labels	 by	 default:	 bug,	 duplicate,	
enhancement,	invalid,	question,	and	won't	fix.	Those	issues	that	represent	new	requirements	for	the	
ontology	 will	 be	 labelled	 by	 the	 developers	 as	 a	 “requirement”	 issue.	 In	 addition,	 ontology	
developers	 can	 create	new	 labels	 if	 they	 think	 they	 can	 improve	 issue	management.	 The	ontology	
developers	are	also	responsible	for	closing	the	issues	created	that	have	already	been	addressed.		

The	new	requirements	which	are	proposed	 in	a	GitHub	 issue	are	automatically	added	to	 the	ORSD	
associated	to	the	ontology	when	the	ontology	development	team	approves	them.	The	requirement	is	
considered	 approved	 when	 the	 ontology	 developers	 tag	 the	 issue	 as	 “requirement”	 and	 add	 a	
comment	associating	an	identifier	and	a	competency	question.	

	

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 43	

	 	

	
Public	

	

	

6. Overview	of	the	VICINITY	ontology	network	
This	section	is	devoted	to	the	ontology	network	developed	for	the	VICINITY	platform	and	provides	an	
overview	 of	 the	 network	 while	 each	 ontology	module	 will	 be	 described	 in	 detail	 in	 the	 following	
sections.	

The	ontology	network	portal	 is	available	online	at	http://vicinity.iot.linkeddata.es/	and,	as	shown	in	
Figure	22,	it	provides	for	each	ontology	the	following	information:	

• a	link	to	its	online	documentation	
• a	link	to	the	GitHub	repository	in	which	the	code	is	managed	
• a	link	to	the	issue	tracker	
• a	link	to	the	online	information	about	requirements	
• a	link	to	the	list	of	its	releases	

	

Figure	22.	VICINITY	ontology	network	portal.	

	

Ontology	online	
documentation

GitHub	repository	
for	code

Issue	tracker

Releases	
tracking

RequirementsOntology	
network	
overview

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 44	

	 	

	
Public	

	

	

The	ontology	network22	developed	consists	so	far	of	three	ontology	modules,	namely	VICINITY	Core,	
Web	of	Things	(WoT)	and	WoT	Mappings.	Figure	23	provides	a	graphical	overview	of	the	VICINITY	
ontology	network	showing	the	concepts	defined	in	each	module	and	a	summary	of	which	concepts	
are	 related.	 The	 figure	 also	 shows	 the	 import	 relation	 between	 modules;	 for	 example,	 the	 Core	
ontology	 imports	 the	Web	 of	 Things	 (WoT)	 ontology.	 The	main	 hierarchies	 between	 concepts	 are	
also	included.	This	hierarchies	are	represented	by	arrows	with	white	endings	(triangles),	and	is	read	
as	follows:	the	class	in	the	origin	of	the	arrow	is	a	subclass	of	the	class	in	the	end	of	the	arrow.		

The	ontologies	are	published	under	the	following	URIs:	

• Core:	http://iot.linkeddata.es/def/core/	
• WoT:	http://iot.linkeddata.es/def/wot/		
• WoT	Mappings:	http://iot.linkeddata.es/def/wot-mappings/		

As	 it	 is	 shown	 in	 Figure	 23,	 the	 ontology	 modules	 are	 related	 between	 them.	 First,	 ad-hoc	
relationships	 are	defined	between	 terms	belonging	 to	different	modules,	 for	 example	 the	 concept	
wot:Link	 in	the	WoT	module	 is	somehow	related	to	the	map:AccessMapping	concept	 in	the	
WoT	Mappings	ontology.	In	addition,	there	is	another	type	of	relationship	between	modules,	that	is,	
the	owl:imports	relation.	By	means	of	this	relation	an	ontology	is	included	into	another	ontology;	
for	example,	 in	the	VICINITY	case,	the	Core	ontology	imports	the	WoT	module,	this	means	that	the	
whole	content	of	the	WoT	module	is	also	part	of	the	Core	ontology.	It	can	also	be	observed	that	the	
WoT	Mappings	ontology	imports	both	the	WoT	and	the	Core	ontologies.	

It	 is	 worth	 noting	 that	 the	 different	 modules	 are	 represented	 with	 different	 color,	 however	 this	
information	is	also	represented	by	the	prefixes	attached	to	each	class.	In	this	sense,	classes	defined	
in	 the	 core	ontology	are	painted	 in	 yellow	 (e.g.,	core:VirtualThing),	 in	 the	WoT	ontology	 in	
blue	 (e.g.,	 wot:Link),	 and	 in	 the	 WoT	 mappings	 ontology	 in	 pink	 (e.g.,	 map:Mapping).	 The	
classes	in	white	with	other	prefixed	are	defined	in	the	ontologies	indicated	by	such	prefixes.	The	list	
of	prefixes,	and	corresponding	ontologies,	reused	along	the	ontologies	and	that	might	appear	in	this	
document	are	listed	in	Table	4.	

It	is	worth	noting	that	complete	and	up	to	date	documentation	of	each	ontology	module	is	provided	
online	and	 is	accessible	 through	each	of	 the	ontologies’	URI.	 In	 the	 rest	of	 this	document	only	 the	
main	 concepts	 or	modelling	decisions	 are	detailed.	 That	 is,	 the	main	 reference	 for	 the	ontology	 is	
available	 online	 since	 the	 information	 in	 this	 deliverable	 just	 contains	 a	 snapshot	 of	 the	 current	
development	and	will	not	be	updated	while	the	ontology	network	evolves	during	the	project.	

																																																								
22	http://vicinity.iot.linkeddata.es/vicinity/		

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 45	

	 	

	
Public	

	

	

	

Figure	23.	VICINITY	ontology	network	overview.	

Prefix	 Ontology	namespace	
foaf	 http://xmlns.com/foaf/0.1/	
geo	 http://www.w3.org/2003/01/geo/wgs84_pos#	
om	 http://www.wurvoc.org/vocabularies/om-1.8/	
org	 http://www.w3.org/ns/org#
owl	 http://www.w3.org/2002/07/owl#	
rdf	 http://www.w3.org/1999/02/22-rdf-syntax-ns#	
rdfs	 http://www.w3.org/2000/01/rdf-schema#	
ssn	 http://purl.oclc.org/NET/ssnx/ssn#	
s4bldg	 https://w3id.org/def/saref4bldg	

Table	4.	Prefixes	of	reused	ontologies	and	their	corresponding	namespaces.	

	

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 46	

	 	

	
Public	

	

	

In	 order	 to	 give	 an	 idea	of	 the	development	 status	 of	 the	ontology	network,	 Table	 5	provides	 an	
overview	of	the	ontology	requirements	extracted	for	each	ontology	module.	This	table	shows	where	
the	 requirements	 have	 been	 extracted	 from	 and	 how	 many	 of	 them	 have	 been	 been	 defined	
(implemented,	discarded	and	pending).	

	
Requirements	

Ontology	 Extracted	from	 Defined	 Implemented	 Discarded	 Pending	

WoT23	 • W3C	Web	of	Things	IG	 35	 16	 11	 8	

Core24	

• D1.5	VICINITY	
• ISO/IEC	IoT	RA	
• Bratislava	 and	 later	
meetings/emails	 with	
partners	

• Partners’	 devices	
characterizations	

172	 84	 17	 71	

WoT	
Mappings25	

• Gateway	API	
• Developers	

16	 15	 1	 0	

	
	 223	 115	 29	 79	

Table	5.	Overview	of	the	ontology	network	requirements	origin	and	current	status.	

Apart	 from	 the	 domain-specific	 ontological	 requirements,	 the	 VICINITY	 ontologies	 development	 is	
based	on	the	following	non-functional	requirements:	

• Reuse:	 existing	 ontologies	 or	 standard	 models	 will	 be	 reused	 when	 possible	
increasing	 interoperability	 with	 external	 systems	 that	might	 be	 already	 using	 such	
ontologies.	This	point	 is	also	applied	at	a	meta-level	by	using	standard	technologies	
to	implement	the	ontologies	themselves.	

																																																								
23	See	 http://vicinity.iot.linkeddata.es/vicinity/requirements/report-wot.html	 for	 the	 online	 version	 of	 the	
VICINITY	wot	ontology	requirements.	
24	See	 http://vicinity.iot.linkeddata.es/vicinity/requirements/report-core.html	 for	 the	 online	 version	 of	 the	
VICINITY	core	ontology	requirements.	
25	See	 http://vicinity.iot.linkeddata.es/vicinity/requirements/report-map.html	 for	 the	 online	 version	 of	 the	
VICINITY	mapping	ontology	requirements.	

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 47	

	 	

	
Public	

	

	

• Modularity:	the	ontology	should	be	designed	as	a	network	in	which	modules	might	
be	interconnected	and	refer	to	others.	

• Extensibility:	the	ontologies	should	allow	the	development	of	third-party	extensions.	
• Good	practices:	the	ontologies	will	be	developed	following	methodologies	and	best	

practices	 commonly	 used	 in	 ontological	 engineering	 in	 order	 to	 address	 ontology	
development	activities	such	as	design,	 implementation,	evaluation,	publication,	and	
documentation,	among	others.	

Each	ontology	module	will	be	detailed	in	the	following	subsections.	In	the	figures	presented	
in	 the	such	subsections	and	the	examples	 in	Section	7	 the	 following	graphical	conventions	
are	used:	

Colored	rectangles	are	used	to	denote	classes	created	in	the	ontology	being	described	while	
white	rectangles	denote	reused	classes.	For	all	the	entities,	it	is	indicated	in	which	ontology	
they	are	defined	by	the	prefix	included	before	their	identifier.	

Arrows	are	used	represent	properties	between	classes	and	to	represent	some	rdf,	rdfs	and	
owl	constructs,	more	precisely:	

• Plain	 arrows	 with	 white	 triangles	 represent	 the	 rdfs:subClassOf	 relation	
between	two	classes.	The	origin	of	the	arrow	is	the	class	to	be	declared	as	subclass	of	
the	class	at	the	destination	of	the	arrow.	

• Plain	arrows	between	two	classes	 indicate	that	the	object	property	has	declared	as	
domain	the	class	in	the	origin	and	as	range	the	class	in	the	destination	of	the	arrow.	
The	identifier	of	the	object	property	is	indicated	within	the	arrow.	

• Dashed	labelled	arrows	between	two	classes	indicate	that	the	object	property	can	be	
instantiated	between	the	classes	in	the	origin	and	the	destination	of	the	arrow.	The	
identifier	of	the	object	property	is	indicated	within	the	arrow.	

• Dashed	arrows	with	identifiers	between	stereotype	signs	(i.e.,	“<<	>>”)	refer	to	OWL	
constructs	that	are	applied	to	some	ontology	elements,	that	is,	they	can	be	applied	to	
classes	or	properties	depending	on	the	OWL	construct	being	used.	

• Dashed	 arrows	 with	 no	 identifier	 are	 used	 to	 represent	 the	 rdf:type	 relation,	
indicating	that	the	element	in	the	origin	of	the	arrow	is	an	instance	of	the	class	in	the	
destination	of	the	arrow.	

Datatype	properties	are	denoted	by	rectangles	attached	to	the	classes,	in	an	UML-oriented	
way.	 Dashed	 boxes	 represent	 datatype	 properties	 that	 can	 be	 applied	 to	 the	 class	 it	 is	
attached	 to	 while	 plain	 boxes	 represent	 that	 the	 domain	 of	 the	 datatype	 property	 is	
declared	to	be	the	class	attached.	

Individuals	are	denoted	by	rectangles	in	which	the	identifier	is	underlined.	

Literals	are	denoted	by	rectangles	in	which	the	value	is	included	between	quotation	marks.	

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 48	

	 	

	
Public	

	

	

The	representation	of	additional	property	axioms	(functional,	 inverse	functional,	transitive,	
and	 symmetric)	 that	 are	 being	 used	 in	 the	 diagram	 are	 shown	 in	 the	 overview	 ontology	
legends.	

In	 addition,	 each	 ontology	 overview	 picture	 includes	 a	 legend	 to	 remind	 the	 reader	 the	
graphics	meaning.	

6.1. Web	of	Things	ontology	
The	Web	of	Things	(WoT)	ontology	has	been	developed	to	define	“what",	“where"	and	“how"	things	
can	be	discovered	or	accessed	in	the	Web	of	Things.	In	this	sense,	the	shared	conceptualization	to	be	
represented	 in	this	ontology	 is	the	domain	of	the	Web	of	Things,	that	 is,	 it	will	describe	the	virtual	
counterpart	of	physical	objects	according	to	the	Web	of	Thing	Model	discussed	in	the	W3C.		

The	current	conceptual	model	defined	by	the	WoT	ontology	is	depicted	in	Figure	24.	This	ontology	
introduces	some	new	concepts	closely	related	to	the	WoT	domain,	namely:	

• Thing.	This	concept	represents	anything	(both	physical	and	non-physical)	which	has	a	
distinct	and	independent	existence	and	can	have	one	or	more	web	representations.	

• Interaction	pattern.	This	concept	represents,	in	the	context	of	WoT,	an	exchange	of	
data	between	a	web	client	and	a	Thing.	This	data	can	be	either	given	as	input	by	the	
client,	returned	as	output	by	the	Thing	or	both.	

• Data	 format.	 This	 concept	 represents	 the	 input	 data	 or	 output	 data	 of	 a	 given	
interaction	pattern	which	includes	information	such	as	the	data	type	used	and	which	
unit	of	measurement	is	the	data	represented	in,	if	needed.	

• Endpoint.	This	concept	 indicates	the	web	 location	where	a	service	can	be	accessed	
by	a	client	application.	

The	 main	 concepts	 defined	 in	 the	 ontology,	 as	 shown	 in	 Figure	 24,	 are	 wot:Thing,	
wot:InteractionPattern,	 wot:DataSchema	 and	 wot:Link	 according	 to	 the	 above	
definitions.	It	is	worth	noting	that	the	class	wot:Thing	defines	things	in	the	context	of	the	Web	of	
Things	 and	 does	 not	 intend	 to	 be	 the	 top	 class	 of	 all	 possible	 concepts	 as	 owl:Thing	 does.	
According	to	the	model,	a	particular	thing	is	linked	to	the	interaction	patterns	it	provides	by	means	of	
the	 object	 property	 wot:providesInteractionPattern.	 An	 interaction	 pattern	 can	 be	
either	 a	 property,	 an	 action	 or	 an	 event,	 represented	 by	 the	 concepts	 wot:Property,	
wot:Action	and	wot:Event,	respectively.		

As	shown	in	Figure	24,	a	thing	or	an	interaction	pattern	can	be	associated	to	one	or	more	endpoints	
either	 directly	 or	 through	 its	 interaction	 patterns	 by	 means	 of	 the	 object	 property	
wot:isAccessibleThrough.	The	main	information	provided	by	the	endpoint	class	is	about	the	
web	location	in	which	the	service	is	provided	which	is	 indicated	by	the	attribute	wot:href.	Every	
endpoint	should	have	a	value	and	only	one	value	for	such	attribute.	Attached	to	such	endpoint	the	
information	 about	 the	 expected	 media	 type	 can	 be	 specified	 by	 means	 of	 the	 property	
wot:isProvidedOverProtocol	 which	 links	 instances	 of	 endpoints	 to	 the	 individuals	 that	
represent	the	possible	web	protocols.	

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 49	

	 	

	
Public	

	

	

Finally,	 some	 interaction	 might	 have	 input	 or	 output	 data	 associated,	 or	 both;	 for	 example,	 for	
writable	 properties.	 In	 order	 to	 model	 that,	 the	 relationships	 wot:hasInputData	 and	
wot:hasOutputData	 were	 created.	 These	 properties	 allow	 the	 connection	 from	 a	 given	
interaction	 pattern	 to	 an	 instance	 that	 will	 be	 linked	 to	 a	 certain	 data	 type	 and	 a	 certain	 unit	 of	
measure	 by	 means	 of	 the	 properties	 wot:isMeasuredIn	 and	 wot:hasValueType,	
respectively.	 This	 modelling	 decision	 responds	 to	 the	 use	 of	 the	 ontology	 design	 pattern	 for	
representing	n-ary	relationships	as	it	is	needed	to	relate	the	given	interaction	patterns	with	both	the	
unit	of	measure	and	the	expected	data	type.	

	

Figure	24.	General	overview	of	the	WoT	ontology.	

It	should	be	mentioned	that	the	presented	ontology	is	under	development	and	new	concepts	might	
be	included	or	extended.	Some	ongoing	lines	of	work	on	the	ontology	include	the	modelling	of	more	
complex	datatypes,	to	detail	security	aspects,	and	to	further	describe	the	actions	and	events	as	they	
are	defined	in	the	W3C	working	group.	

6.2. VICINITY	Core	ontology	
The	VICINITY	 Core	 ontology	 aims	 at	modelling	 the	 information	 needed	 to	 exchange	 IoT	 descriptor	
data	between	peers	through	the	VICINITY	platform.	This	ontology	is	created	following	a	cross-domain	
approach;	therefore,	 it	could	be	extended	by	domain	ontologies	that	would	cover	vertical	domains	

Referenced ontologies:
 om: http://www.wurvoc.org/vocabularies/om-1.8/

Legend:

subclassOf
object property with domain
and range definitions

Class

Reused Class

Class For Properties
F: functional
IF: Inverse functional (only OP)
T: Transitive (only OP)

(Card) Attribute whose
domain is the attached class

(Card) Attribute applicable to
the attached class

Class

<<stereotype>>object property applicable to
the attached class

wot:providesInterac
tionPattern (0..N)

wot:Thing

wot:InteractionPattern

wot:Event

wot:Action

wot:isAccessibleThrough (0..N)

wot:hasValueType
(0..1)

wot:hasOutputData (1..N)

(1..1) wot:thingName:: String
(0..1) wot:baseURI:: String

(0..1) wot:isWritable:: Boolean (F)
(0..1) wot:isRequired:: Boolean (F)

(1..1) wot:interactionName:: String

wot:DataType

om:Unit_of_measure wot:isMeasuredIn
(0..1)

(1..1) wot:href:: String (F)
(1..1) wot:hasMediaType:: String [F)

wot:Communication
Protocol

wot:isProvidedOver
Protocol (F) (1..1)

wot:hasInput
Data (0..1)

wot:hasOutputData (1..N)

wot:hasOutputData (1..N)

wot:isMeasuredIn

(0..1) wot:defaultValue:: Literal

wot:Property wot:DataSchema

wot:Security

wot:isAccessibleThrough (0..N)

wot:implements
Security (0..N)

wot:Link

Ontology:
 wot: http://iot.linkeddata.es/def/wot#

wot:isReadableThrough (0..N)
wot:isWritableThrough (0..N)

<<rdfs:subPropertyOf>>

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 50	

	 	

	
Public	

	

	

such	as	health,	 transport,	 buildings,	 etc.	 This	 section	provides	 the	documentation	 for	 the	VICINITY	
platform-oriented	ontology.	

The	current	conceptual	model	defined	by	the	WoT	ontology	 is	depicted	 in	Figure	25.	This	ontology	
introduces	some	new	concepts	closely	related	to	the	WoT	domain,	namely:	

• Ecosystem.	 This	 concept	 represents	 the	 collection	 of	 things	 that	 co-exist	 in	 a	 given	
environment.	

• Thing	 Ecosystem	 Description.	 This	 concept	 represents	 a	 digital	 representation	 that	
encapsulates	an	ecosystem	that	is	accessible	via	web	services.	

• Device.	This	concept	 is	defined	according	to	the	 ISO/IEC	Reference	Architecture	as	 follows:	
“An	IoT	device	is	a	digital	entity	which	bridges	between	real-world	physical	entities	and	the	
other	 digital	 entities	 of	 an	 IoT	 system.	 IoT	 device	 interacts	 with	 one	 or	 more	 networks	
through	which	 interactions	 are	made	with	 other	 entities.	 IoT	 device	 exposes	 one	 or	more	
endpoints	by	which	interactions	are	made”.	

• Service.	This	concept	is	defined	according	to	the	ISO/IEC	Reference	Architecture	as	follows:	
“A	 service	 is	 a	 set	 of	 distinct	 capabilities	 provided	 by	 a	 software	 component	 through	 a	
defined	 interface,	which	may	be	 composed	of	 other	 services.	 A	 service	 is	 implemented	by	
one	 or	 more	 components.	 A	 service	 defines	 network	 interfaces	 and	 exposed	 by	 an	
Endpoint”.	

Apart	from	these	main	terms	that	have	been	defined	for	the	particular	case	of	the	VICINITY	platform	
use	 case,	 there	 are	 other	 concepts	 that	 are	 needed	 in	 the	 VICINITY	 approach	 to	 complement	 the	
WoT	ontology,	namely:	neighbourhood,	sensor,	actuator,	relative	endpoint	or	value.	

For	example,	it	can	be	observed	that	the	concept	wot:Thing	is	specialized	in	the	Core	ontology	by	
means	of	 the	concepts	core:VirtualThing	 and	core:PhysicalThing.	 Such	concepts	are	
further	specialized	by	core:Service	and	core:Device	supporting	the	use	case	of	the	VICINITY	
registration	of	devices	and	services	and	aligning	the	modelling	with	the	ISO/IEC	RA	standard.	

The	VICINITY	platform	is	based	on	the	idea	of	retrieving	the	set	of	web	things	that	might	be	useful	to	
answer	a	given	request	made	to	the	system.	In	this	sense,	the	idea	of	collections	of	things	needs	to	
be	 represented.	 For	 this	 reason,	 the	 class	core:Ecosystem	 is	 included	 in	 the	 Core	ontology.	 It	
gathers	 together	 the	 set	 of	 things	 that	 might	 be	 used	 in	 a	 query	 by	 means	 of	 the	 property	
core:hasComponent,	 which	 links	 ecosystems	 to	 the	 web	 things,	 and	 its	 inverse	
core:isComponentOf.	

Another	 example	 of	 specialization	 is	 the	 case	 of	core:RelativeEndpoint	which	 extends	 the	
definition	of	the	wot:Link	concept	for	those	cases	in	which	an	endpoint	is	defined	in	a	relative	way	
to	another	endpoint.	 This	particular	 situation	 that	 is	 allowed	 in	 the	VICINITY	platform	 is	not	 taken	
into	 account	 in	 the	 WoT	 Working	 Group	 specification	 (at	 least	 at	 the	 moment	 of	 writing	 this	
document);	therefore,	it	is	included	as	part	of	the	Core	ontology.	

	

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 51	

	 	

	
Public	

	

	

	

	

Figure	25.	General	overview	of	the	VICINITY	Core	ontology.	

Another	 requirement	 raised	by	VICINITY	use	 cases	 is	 to	 represent	 the	geolocation	of	devices,	 as	 it	
might	 be	 needed	 to	 ask	 for	 all	 the	 devices	 in	 a	 given	 pilot	 site.	 For	 this	 reason,	 the	 wgs84	 geo	
positioning	vocabulary26	and	the	SAREF4BLDG	ontology27	has	been	reuse.	From	the	wgs84	vocabulary	
the	 class	 geo:SpatialThing	 is	 reused	 to	 represent	 anything	 with	 spatial	 extent.	 In	 order	 to	
represent	 geographical	 coordinates	 associated	 to	 a	 spatial	 thing,	 the	 vocabulary	 defines	 the	
properties	geo:lat,	geo:long	and	geo:alt.	In	addition,	the	property	geo:location	allows	

																																																								
26	https://www.w3.org/2003/01/geo/wgs84_pos		
27	https://w3id.org/def/saref4bldg		

Legend:
subclassOf

object property with domain
and range definitions

Class

Reused Class

Class
For Properties

F: functional
IF: Inverse functional (only OP)
T: Transitive (only OP)

wot:Thing

wot:thingName:: String
wot:baseURI:: String

core:ThingDescription

core:isDescribedBy (IF)

core:ThingEcosystem
Description

core:describes (F)

core:Ecosystem

core:hasComponent

core:isComponentOf

core:isDescribedBy
(IF)

core:PhysicalThing

core:Agent

org:Organization

foaf:Agent

org:hasMember

org:isMemberOf

org:Membership

org:hasMemberShip

org:member

org:organization

org:Roleorg:role

Ontology:
 core: http://iot.linkeddata.es/def/core#

core:has
PartnershipWith (S)

core:describes (F)

core:owns

(Card) Attribute whose
domain is the attached class

geo:SpatialThing

geo:location

s4bldg:BuildingSpace

s4bldg:isContainedIn

(Card) Attribute applicable to
the attached class

Class

core:VirtualThing

core:owns

core:deviceName:: string
core:deviceDescription:: string
core:serialNumber:: string

core:hasOwner

core:hasVendor

core:Device
<<owl:inverseOf>>

<<owl:inverseOf>>

core:serviceName:: string
core:serviceDescription:: string

core:Service

core:hasOwner

core:Neighbourhood

core:hasNeighbourhood (F)

core:isNeighbourhoodOf (F)

core:involves

<<owl:inverseOf>>

<<rdfs:subPropertyOf >>

core:isInvolvedIn

<<rdfs:subPropertyOf>>

Referenced ontologies:
 foaf: http://xmlns.com/foaf/0.1/
 geo: http://www.w3.org/2003/01/geo/wgs84_pos#
 om: http://www.wurvoc.org/vocabularies/om-1.8/
 rdfs: http://www.w3.org/2000/01/rdf-schema#
 ssn: http://purl.oclc.org/NET/ssnx/ssn#
 s4bldg: https://w3id.org/def/saref4bldg

Imported ontologies:
 org: http://www.w3.org/ns/org#
 wot: http://iot.linkeddata.es/def/wot#

<<owl:inverseOf>>

<<stereotype>>

<<owl:inverseOf>>

foaf:Image

core:avatar

core:avatar

core:Sensor

core:Actuator

wot:Link

wot:isAccesibleThrough

core:Service

core:Application

foaf:Person

core:DigitalUser

core:HumanUser

core:interactsUsing

core:interactsUsing

ssn:Property

core:actsOn

core:monitors

wot:InteractionPattern

wot:providesInteractionPattern

core:hasValue

core:timeStamp:: dateTime (F)

core:Value wot:DataSchema

core:expressedInFormat

<<owl:inverseOf>>

core:contains (T)

core:contains (T)

core:RelativeEndpoint

core:isRelativeTo (F)

core:relativeHref:: String

rdfs:Resource

rdf:value

rdf:type

object property applicable
to the attached class

instance

core:actsOn
core:monitors

ssn:FeatureOfInterest

ssn:isPropertyOf

core:hasMaxValue
core:hasMinValue

core:FeatureProperty

core:aboutProperty (F)

core:monitorsFeatureProperty
core:actsOnFeatureProperty

ssn:Device

ssn:SensingDevice

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 52	

	 	

	
Public	

	

	

the	 linking	 from	 any	 entity	 to	 a	 spatial	 thing	 where	 the	 coordinates	 of	 such	 entity	 can	 be	
represented.	 Besides,	 the	 class	 s4bldg:BuildingSpace	 and	 the	 relationship	
s4bldg:isContainedIn	 are	 reused	 to	 allow	 the	 representation	 of	 devices	 being	 located	 in	
specific	building	spaces.	It	should	be	mentioned	that	the	building	spaces	are	not	defined	in	detail	in	
such	ontology.	Therefore,	 it	 is	used	as	a	bridge	term	just	to	represent	 individuals	belonging	to	that	
class	that	would	be	further	described	by	using	other	ontologies.	

In	addition,	it	is	foreseen	within	the	VICINITY	use	cases	the	retrieval	of	values	from	the	web	services	
where	the	web	things	expose	their	interaction	patterns.	For	example,	some	user	might	ask	about	the	
latest	 value	 of	 a	 given	 property.	 For	 this	 reason,	 the	 class	 core:Value	 and	 the	 relationship	
core:hasValue	 have	 been	 incorporated	 to	 the	 ontology.	 This	 class	 is	 intended	 to	 represent	 a	
given	value	by	means	of	the	property	rdf:value	or	a	range	of	values	using	core:hasMinValue	
and	core:hasMaxValue,	in	a	given	point	in	time	(core:timeStamp).	It	is	also	possible	to	link	
to	 the	 data	 schema	 in	 which	 the	 value	 is	 represented	 through	 the	 property	
core:expressedInFormat.	

Finally,	 as	 the	VICINITY	platform	manages	 the	 concept	of	 neighbourhoods,	 it	 is	 represented	 in	 the	
Core	 ontology.	More	 precisely,	 agents,	 represented	 by	core:Agent,	 are	 related	 among	 them	 in	
neighbourhoods.	 For	 doing	 so,	 the	 relations	 core:isInvolvedIn,	 core:involves,	
core:hasNeighbourhood	 and	 core:isNeighbourhoodOf	 have	 been	 defined.	 In	 this	
sense,	 an	 instance	 of	 core:Neighbourhood	 will	 point	 to	 all	 the	 agents	 belonging	 to	 such	
neighbourhood	through	the	relation	core:involves	and,	accordingly,	all	 the	agents	 involved	 in	
the	 neighbourhood	 will	 point	 to	 it	 through	 the	 inverse	 property	 core:isInvolvedIn.	 Each	
neighbourhood	is	built	taking	an	agent	as	its	central	point.	For	this	reason,	there	is	a	specific	relation	
between	 such	 agent	 and	 the	 neighbourhood	 being	 represented.	 This	 relation	 is	 implemented	 by	
means	 of	 the	 properties	 core:hasNeighbourhood	 (stated	 from	 the	 agent	 to	 the	
neighbourhood)	and	its	inverse	core:isNeighbourhoodOf	(stated	from	the	neighbourhood	to	
the	agent).	

Since	this	ontology	builds	on	top	and	extends	the	WoT	ontology,	the	latter	is	imported	into	the	Core	
ontology	by	means	of	the	owl:imports	statement.	In	addition,	the	Organization	ontology28	of	the	
W3C	 is	 also	 imported	 in	 order	 to	 support	 the	 representation	 of	 organizations,	 roles	 and	
memberships.		

The	core:Device	concept	is	intended	to	be	extended	according	to	the	given	use	cases	both	within	
VICINITY	and	in	external	projects	that	might	reuse	the	VICINITY	ontology.	In	order	to	support	the	use	
cases	and	pilot	defined	by	VICINITY	a	preliminary	hierarchy	of	devices	has	been	defined.	As	it	can	be	
observed	 in	 Figure	 26,	 main	 subclasses	 of	 devices	 are	 core:Sensor	 and	 core:Actuator.	
However,	when	a	device	is	not	easily	classified	under	at	least	one	of	these	classes,	it	can	be	classified	
directly	under	core:Device.		

																																																								
28	http://www.w3.org/ns/org#		

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 53	

	 	

	
Public	

	

	

	 	

Figure	26.	Device	hierarchy	for	VICINITY	use	cases.	

Most	of	the	devices	have	the	ability	of	observing	or	acting,	or	both,	over	one	or	more	properties.	It	is	
worth	mentioning	 that	 in	 this	 context	 the	meaning	 of	 “property”	 is	 understood	 as	 an	 observable	
quality	of	a	thing.	In	order	to	create	a	preliminary	list	of	such	properties,	those	that	can	be	observed	
or	modified	by	the	devices	 that	will	be	used	 in	the	release	0.1	of	 the	VICINITY	platform	have	been	
included	in	the	ontology.	These	properties	have	been	classified	under	the	ssn:Property	reused	
class.	The	resulting	hierarchy	including	classes	and	instances	is	shown	in	Figure	27.	

core:Device

core:Sensorcore:Actuator

core:HVACSensor

core:LightSwitch

core:Charger

core:CO2Sensor

core:HumiditySensor

core:LuminanceMeter

core:MotionSensor

core:NoiseSensor

core:EBikeCharger

core:Lightbulb

core:OccupancySensor

core:PeopleCounter

core:Thermometer

core:Thermostat

core:PowerMeter

core:EVCharger

core:WaterEnergyMeter

core:WaterFlowMeter

core:IndoorClimateQual
itySensor

core:SmartOven

core:SmartRefrigerator

core:Battery

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 54	

	 	

	
Public	

	

	

	

	

Figure	27.	Hierarchy	of	properties	and	exemplary	instances.	

In	 some	 cases,	 it	will	 be	 needed	 to	 represent	 that	 a	 sensor	 or	 an	 interaction	pattern	 (property	 or	
event)	monitors	a	given	property	(as	defined	in	the	SSN	ontology)	of	a	particular	feature	of	interest	
instead	of	a	generic	one.	This	also	could	be	the	case	for	actuators	or	actions	acting	on	properties	of	
particular	features	of	interest.	In	order	to	allow	the	representation	of	this	information	being	able	of	
unequivocally	identify	to	which	pair	of	"property-feature	of	interest"	is	being	monitored/affected,	it	
is	 needed	 to	 include	 an	 auxiliary	 class	 following	 a	 n-ary	 class	 pattern.	 In	 this	 sense,	 if	 a	 device	
observes	 3	 properties	 about	 2	 features	 of	 interest,	 it	 will	 be	 possible	 to	 identify	 which	 particular	
properties	are	observed	 for	each	 feature	of	 interest.	Figure	28	 illustrates	 the	model	proposed	 for	
this	n-ary	pattern	represented	by	the	class	core:FeatureProperty.	It	is	worth	noting	that	the	
following	property	chains29	have	been	defined:		

• core:monitorsFeatureProperty,	core:aboutProperty	→	core:monitors	
• core:actsOnFeatureProperty,	core:aboutProperty	→	core:actsOn	

																																																								
29	https://www.w3.org/TR/owl2-rdf-based-semantics/#Semantic_Conditions_for_Sub_Property_Chains		

ssn:Property

core:AmbientProperty

core:LightProperty

core:Humidity
AmbientProperty

core:Temperature
AmbientProperty

core:CarbonDioxide

core:Irradiance

core:LuminusIntensity

core:LuminusFlux

core:Radiance

core:RadiantIntensity

core:OperationalStatus

core:AmbientTemperature

core:RelativeHumidity

core:Luminance

core:Presence
core:OpenClosed

core:OnOff

core:C02Concentration

core:DimmingLevel

ssn:OperatingProperty

core:PowerConsumption

core:MeanPowerConsumption

core:MotionProperty

core:Motion

core:FanSpeed

core:ChargeStatus

core:LightColor

core:ValvePosition

core:Modecore:Sound

core:NoiseLevel

core:EntryExit

core:MaxPowerConsumption

core:MinPowerConsumption

core:AverageTemperature

core:AverageTemperatureDeviation

core:MaxTemperature

core:HighestTemperatureDeviation

core:MinTemperature

core:AverageHumidity

core:AverageHumidityDeviation

core:MaxHumidity

core:HighestHumidityDeviation

core:MinHumidity

core:AverageCO2Concentration

core:AverageCO2Concentration
Deviation

core:MaxCO2Concentration

core:HighestCO2Concentration
Deviation

core:MinCO2Concentration

core:AverageMovementTime

core:AverageMovementShare

core:AverageSound

core:AverageSoundDeviation

core:MaxSound

core:HighestSoundDeviation

core:MinSound

core:AverageLightIntensity

core:MaxLightIntensity

core:MinLightIntensity

core:IndoorEnvironmentalQualityScore

core:DeviceStatus

core:DeviceLight

core:TemperatureProperty

core:DeviceTemperature

core:MeatProbeTemperature

core:TimeProperty

core:BakeRemainingTime

core:ElapsedBakingTime

core:CurrentBakingStepRemaini
ngTime

ssn:OperatingProperty

ssn:BatteryLifetime

core:StoredEnergy

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 55	

	 	

	
Public	

	

	

	

Figure	28.	N-ary	pattern	to	specify	which	property	is	monitored/affected	about	a	specific	feature	of	interest.	

Finally,	 the	 VICINITY	 Core	 ontology	 takes	 advantage	 of	 the	 reuse	 of	 the	 SSN	 ontology	 in	 order	 to	
represent	some	device	characteristics.	 In	this	case,	the	representation	of	a	value	for	a	given	device	
property	 is	 made	 through	 the	 class	 core:Value	 (already	 explained	 for	 the	 use	 case	 of	 values	
provided	 for	 a	 given	 property	 through	 a	 web	 service)	 and	 the	 relationship	 ssn:hasValue	 as	
shown	in	Figure	29.	

	

Figure	29.	Submodel	used	for	describing	sensor	capabilities.	

	

6.3. WoT	Mappings	ontology		
Not	all	thing	attributes	can	be	expressed	in	a	static	and	shareable	description;	mainly	because	they	
are	 dynamic,	 protected	 or	 both.	 For	 instance,	 the	 geo-location	 of	 certain	 physical	 things	 can	 be	
considered	as	sensitive	and	only	be	obtained	under	specific	security	and	privacy	constraints,	through	
its	 endpoints.	 Besides,	 its	 value	 may	 dynamically	 vary	 as	 the	 physical	 thing	 changes	 its	 position.	
Therefore,	 if	 this	 casuistry	 is	 not	 taken	 into	 account,	 the	 location-based	 discovery	 of	 such	 kind	 of	
things	will	not	be	possible.	

A	solution	to	this	would	involve	describing	as	well	how	data	provided	by	secured	endpoints	map	to	
specific	 thing	 attributes.	 By	 following	 this	 approach,	 descriptions	 might	 inform	 on	 how	 to	

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 56	

	 	

	
Public	

	

	

automatically	and	securely	retrieve	and	map	their	own	missing	attribute	values,	by	means	of	what	it	
is	called	access	mappings.	

The	adoption	of	access	mappings	in	the	data	model	leads	to	a	wider	scope	solution:	to	gather	values	
for	any	kind	of	 thing	attributes	 from	 its	own	web	 interfaces,	 significantly	extending	 the	support	 to	
interoperability	in	the	IoT	ecosystem.	In	order	to	achieve	this,	data	models	for	web	things	should	also	
support	describing	the	exchanged	data	with	the	mentioned	links	or	endpoints,	 i.e.,	they	should	not	
just	 describe	 its	 format	 but	 also	 its	 content.	 Thus,	 rather	 than	 expecting	 to	 receive	 data	 from	
endpoints	 in	 a	 specific	 syntax,	 descriptions	would	 inform	 consumers	on	how	 to	process	 responses	
and	extract	useful	information.	

For	instance,	the	description	of	a	temperature	sensor	may	state	that	the	data	received	after	invoking	
an	 endpoint	 contains	 the	 latest	 measured	 value	 in	 Celsius	 and	 where	 to	 find	 such	 value	 in	 the	
response.	Thanks	to	this,	discovery	clients	might	be	able	to	issue	search	criteria	for	things	measuring	
temperature	in	Celsius	and	get,	extract	and	interpret	values	from	the	discovered	things'	endpoints.	

This	 VICINITY	 approach	 for	 semantic	 discovery	 has	 been	 taken	 into	 account	 within	 the	 VICINITY	
ontology	models.	More	 precisely,	 the	WoT	Mappings	 ontology,	which	 is	 described	 in	 this	 section,	
aims	at	providing	support	for	the	semantic	description	of	such	mappings.	

The	 conceptualization	 to	 be	 represented	 in	 the	 WoT	 Mappings	 ontology	 is	 the	 mechanism	 for	
accessing	 the	 values	 provided	 by	 web	 things.	 In	 this	 sense	 what	 is	 needed	 is	 to	 represent	 the	
mappings	 between	 the	 values	 provided	 under	 a	 given	 endpoint	 for	 example	 in	 JSON	 format	 to	
common	semantic	vocabularies.	

The	current	conceptual	model	defined	by	the	WoT	Mappings	ontology	 is	depicted	 in	Figure	30.	 In	
order	 to	model	 this	 information,	 it	 should	 be	 first	 established	what	 does	 a	mapping	mean	 in	 this	
context:	

• Mapping.	A	mapping	indicates	the	relation	between	a	given	key	(provided	as	structured	data	
in	an	on-line	resource)	and	the	RDF	property	to	which	the	values	should	be	mapped	and	the	
target	type	of	object.	

Taking	this	definition	as	starting	point	and	together	with	sample	data,	the	ontology	shown	in	Figure	
30	 was	 designed.	 The	 main	 concepts	 defined	 in	 such	 ontology	 are	 map:Mapping	 and	
map:AccessMapping.	 The	 former	 corresponds	 to	 the	mapping	 concept	above-defined	allowing	
the	connection	between	a	key	provided	within	structured	data	in	an	on-line	resource,	represented	by	
the	datatype	property	map:key,	to	the	RDF	property	to	which	it	should	be	mapped	to,	represented	
by	the	object	property	map:predicate.	

The	 instances	of	 the	 class	map:Mapping	 can	be	 further	 classified	 into	one	of	 its	 two	 subclasses,	
map:ObjectPropertyMapping	 and	 map:DatatypePropertyMapping,	 depending	 on	
whether	 the	 predicate	 attached	 to	 them	 is	 an	 owl:ObjectProperty	 or	 an	
owl:DatatypeProperty,	respectively.	As	it	can	be	observed,	map:Mapping	 is	defined	as	the	
disjoint	 union	 of	 both	 subclasses,	 since	 an	 instance	 of	map:Mapping	 can	 belong	 to	 any	 of	 the	
subclasses	but	only	can	belong	to	one	of	them.	

	

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 57	

	 	

	
Public	

	

	

	

Figure	30.	General	overview	of	the	VICINITY	WoT	Mappings	ontology.	

As	it	can	be	observed	in	the	figure,	another	difference	between	the	subclasses	of	map:Mapping	is	
the	 target	 element	 expected	 for	 the	 values	 transformed;	 for	 the	 case	 of	 the	
map:ObjectPropertyMapping	 the	 expected	 target	 should	 be	 an	 instance	 of	 owl:Class	
while	for	the	case	of	map:DatatypePropertyMapping	it	should	map	values	to	instances	of	the	
class	 rdfs:Datatype.	 The	 mappings	 are	 linked	 to	 these	 target	 elements	 by	 means	 of	 the	
properties	map:targetClass	and	map:targetDatatype,	respectively.	

The	class	map:AccessMapping	 is	 included	 in	 the	model	 in	order	 to	 link	one	or	more	mappings	
that	are	executed	with	a	given	endpoint	 (represented	by	wot:Link).	This	allows	the	definition	of	
the	mappings	 independently	 of	 the	 endpoint	 in	which	 they	 can	 be	 executed	 since	 the	 link	 to	 the	
endpoint	 is	 established	 from	 the	 access	 mapping.	 A	 thing	 description,	 represented	 by	 the	 class	
core:ThingDescription,	may	have	zero	or	more	access	mappings	attached	by	means	of	 the	

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 58	

	 	

	
Public	

	

	

object	 property	 map:hasAccessMapping.	 The	 object	 property	 map:isExecutedAfter	
indicates	dependency	on	the	order	of	execution	between	access	mappings.	

Finally,	 the	 object	 property	 map:valuesTransformedBy,	 which	 can	 only	 be	 applied	 to	
map:ObjectPropertyMapping	 instances,	 is	 used	 to	 state	 that	 the	 obtained	 values	 from	 a	
resource	 when	 applying	 a	 mapping	 should	 be	 transformed	 according	 to	 the	 referenced	
core:ThingDescription.	 This	 predicate	 is	 oriented	 to	 support	 the	 WoT	 discovery	 feature	
proposed	at	the	W3C	IG,	taken	literally	“The	relationship	between	things	provides	a	further	basis	for	
discovery.	The	relationships	are	defined	through	the	models	for	things,	where	a	thing	has	properties	
whose	values	are	other	things.”30	 	

																																																								
30	See	for	further	information	https://www.w3.org/WoT/IG/wiki/Discovery_TF				

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 59	

	 	

	
Public	

	

	

7. Example	of	use	of	the		VICINITY	modules	

It	 is	 always	 advisable	 to	 provide	 examples	 that	 ease	 the	 ontology	 population	 activity	 to	 potential	
(re)users.	 For	 this	 reason,	 this	 chapter	 includes	 some	 examples	 about	 how	 to	 use	 the	 three	
ontologies	above-described.	

For	the	WoT	ontology,	some	examples	are	extracted	from	the	WoT	Current	Practices	document	[19]	
provided	by	the	W3C	WoT	Interest	Group31	while	for	the	core	and	mappings	ontologies	the	examples	
are	extracted	from	different	use	cases.	

7.1. Example	1:	Data	only	

The	example	“Example	1:	Data	only”	provided	by	the	W3C	WoT	Interest	Group	is	depicted	in	Figure	
31.	At	 the	 top	of	 the	 figure	a	graph	showing	 the	RDF	 triples	 that	would	 represent	 the	 information	
included	 in	 the	 JSON	 excerpt	 (at	 the	 bottom	 of	 the	 figure)	 is	 shown.	 It	 should	 be	 noted	 that	 the	
numbers	in	the	JSON	excerpt	might	be	related	to	one	or	more	triples	in	the	RDF	graph,	for	example,	
the	number	6	 involves	4	 triples	 in	RDF.	 In	 this	 case,	 in	order	 to	 represent	 the	 thing	description	an	
instance	 of	 the	 class	wot:Thing	 is	 created	 (triple	 labelled	 with	 “1”).	 Such	 instance	 has	 a	 name	
associated	by	means	of	the	datatype	property	wot:thingName	(triple	labelled	with	“2”).	In	order	
to	 link	 the	 web	 thing	 to	 the	 interaction	 pattern	 it	 provides,	 the	 object	 property	
wot:providesInteractionPattern	 is	used	having	as	subject	the	 instance	representing	the	
web	 thing,	 and	 as	 object	 a	 new	 instance	 representing	 the	 property	 interaction	 pattern	
“temperature”	(triple	labelled	with	“3”).	It	is	worth	mentioning	that	in	order	to	represent	the	output	
data	schema	provided	by	the	interaction	pattern	a	n-ary	pattern	must	be	instantiated.	In	this	sense,	
the	 relation	 between	 the	 interaction	 pattern	 and	 the	 output	 data	 leads	 to	more	 than	 one	 triple,	
more	 precisely	 those	 labelled	 with	 “6”.	 First,	 the	 interaction	 pattern	 is	 linked	 to	 an	 instance	 of	
wot:DataSchema	 and	 then	 this	 latter	 instance	 is	 linked	 to	 the	 individual	 ex:number.	 The	
instance	 of	wot:DataSchema	 could	 also	 be	 linked	 to	 the	 unit	 of	measure	 in	 which	 the	 data	 is	
provided	or	to	a	default	value.	Finally,	the	interaction	pattern	instance	is	linked	to	the	endpoint	such	
property	is	provided	by	means	of	the	object	property	wot:isAccesibleThrough	(triple	labelled	
with	“8”).	The	instance	representing	the	endpoint	in	which	the	property	is	provided	is	linked	to	the	
value	of	 the	web	address	or	service	 in	which	 it	 is	provided	(triple	 labelled	with	“9”)	and	the	media	
type	in	which	the	information	is	retrieved	(triple	labelled	with	“10”).	

																																																								
31	https://www.w3.org/WoT/IG/		

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 60	

	 	

	
Public	

	

	

	

Figure	31.	Example	of	a	Thing	interaction	pattern	from	only	data	example.	

7.2. Example	2:	Semantic	Annotations	

Another	example	extracted	from	the	W3C	WoT	Interest	Group’s	Current	Practices	document	 is	 the	
"Example	2:	Semantic	Annotations",	 shown	 in	Figure	32.	 In	 this	case,	apart	of	being	annotated	by	
the	 WoT	 ontology,	 the	 data	 is	 annotated	 also	 using	 a	 sensor	 ontology	 and	 an	 ontology	 for	
representing	 units	 of	 measure	 as	 indicated	 by	 the	 classes	 sensor:Temperature	 and	
om:Unit_of_measure,	respectively.	

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 61	

	 	

	
Public	

	

	

	

Figure	32.	Example	of	a	Thing	interaction	pattern	from	data	and	semantics	example.	

7.3. Example	3:	More	Capabilities	

The	 last	 example	 taken	 from	 the	 W3C	 WoT	 Interest	 Group’s	 Current	 Practices	 document	 is	 the	
"Example	 3:	 More	 Capabilities"	 and	 it	 is	 depicted	 in	 Figure	 33.	 In	 this	 example,	 four	 interaction	
patterns	associated	to	a	LED	are	described	in	detail.	For	example,	the	value	types	provided	as	output	
data	or	expected	as	input	data	are	provided,	also	the	unit	of	measure	in	which	the	data	is	expressed	
or	the	media	type	used	in	the	online	services.	

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 62	

	 	

	
Public	

	

	

	 	

Figure	33.	Example	of	interaction	patterns	for	a	LED.	

wo
t:p
ro
vid

es
In
te
r

ac
tio
nP
at
te
rn

wo
t:b
as
eU

RI

ex
:M
yL
ED
Th
in
g

wo
t:T
hi
ng

wo
t:I
nt
er
ac
tio
nP
at
te
rn

ex
:M
yL
ED
Th
in
gS
ta
tu
s

ex
:M
yL
ED
Th
in
gF
ad
eI
n

ex
:M
yL
ED
Th
in
gF
ad
eO
ut

ex
:M
yL
ED
Th
in
gC
rit
ic
al

Co
nd
iti
on

“c
oa
p:
//m

yle
d.
ex
am

pl
e.
co
m
:

56
83
/“^
^x
sd
:s
tri
ng

wo
t:P
ro
pe
rty

wo
t:E
ve
nt

wo
t:A
ct
io
n

wo
t:i
sW

rit
ab
le

“tr
ue
”

^^
xs
d:
bo
ol
ea
n

wo
t:L
in
k

ex
:b
oo
le
an

wo
t:v
al
ue
Ty
pe

ex
:s
tri
ng

wo
t:v
al
ue
Ty
pe

ex
:M
yL
ED
Th
in
g

St
at
us
Li
nk
1

ex
:M
yL
ED
Th
in
g

St
at
us
Li
nk
2

ex
:M
yL
ED
Th
in
g

Fa
de
in
Li
nk
1

ex
:M
yL
ED
Th
in
g

Fa
de
In
Li
nk
2

“c
oa
p:
//m

yle
d.
ex
am

pl
e.
co
m
:

56
83
/p
wr
“^
^x
sd
:s
tri
ng

wo
t:h
re
f

wo
t:h
as
M
ed
ia
Ty
pe

“h
ttp
://
m
yt
em

p.
ex
am

pl
e.
co
m
:

80
80
/s
ta
tu
s“
^^
xs
d:
st
rin
g

wo
t:h
re
f

ex
:M
yL
ED
Th
in
g

Fa
de
in
In
pu
tD
at
a

wo
t:h
as
In
pu
t

Da
ta

ex
:in
te
ge
r

wo
t:v
al
ue
Ty
pe

ac
tu
at
or
:u
ni
t

“c
oa
p:
//m

yle
d.
ex
am

pl
e.
co
m
:

56
83
/in
“^
^x
sd
:s
tri
ng

“h
ttp
://
m
yt
em

p.
ex
am

pl
e.
co
m
:

80
80
/in
“^
^x
sd
:s
tri
ng

ex
:M
yL
ED
Th
in
g

Fa
de
O
ut
Li
nk
1

ex
:M
yL
ED
Th
in
g

Fa
de
O
ut
Li
nk
2

ex
:M
yL
ED
Th
in
g

Fa
de
O
ut
In
pu
tD
at
a

wo
t:h
as
In
pu
t

Da
ta

wo
t:v
al
ue
Ty
pe

ac
tu
at
or
:u
ni
t

“c
oa
p:
//m

yle
d.
ex
am

pl
e.
co
m
:

56
83
/o
ut
“^
^x
sd
:s
tri
ng

wo
t:h
re
f

“h
ttp
://
m
yt
em

p.
ex
am

pl
e.
co
m
:

80
80
/o
ut
“^
^x
sd
:s
tri
ng

wo
t:h
re
f

wo
t:h
re
f

wo
t:h
re
f

ac
tu
at
or
:o
nO

ffS
ta
tu
s

ac
tu
at
or
:fa
de
In

ac
tu
at
or
:fa
de
O
ut

ac
tu
at
or
:a
le
rt

ac
tu
at
or
:m
s

ex
:M
yL
ED
Th
in
gC
rit
ic
al

Co
nd
iti
on
Li
nk
1

“c
oa
p:
//m

yle
d.
ex
am

pl
e.
co
m
:

56
83
/e
v“
^^
xs
d:
st
rin
g

wo
t:h
re
f

wo
t:p
ro
vid

es
In
te
r

ac
tio
nP
at
te
rn

wo
t:p
ro
vid

es
In
te
r

ac
tio
nP
at
te
rn

wo
t:p
ro
vid

es
In
te
r

ac
tio
nP
at
te
rn

wo
t:i
sA
cc
es
ib
le
Th
ro
ug
h

wo
t:i
sA
cc
es
ib
le
Th
ro
ug
h

wo
t:i
nt
er
ac
tio
nN

am
e

“s
ta
tu
s“
^^
xs
d:
st
rin
g

wo
t:i
nt
er
ac
tio
nN

am
e

“fa
de
In
“^
^x
sd
:s
tri
ng

wo
t:i
nt
er
ac
tio
nN

am
e

“fa
de
O
ut
“^
^x
sd
:s
tri
ng

wo
t:i
nt
er
ac
tio
nN

am
e

“c
rit
ica

lC
on
di
tio
n“
^^
xs
d:
st
rin
g

wo
t:t
hi
ng
Na

m
e

“M
yL
ED

Th
in
g“

^^
xs
d:
st
rin
g

wo
t:D

at
aS
ch
em

a
wo

t:D
at
aT
yp
e

ex
:M
yL
ED
Th
in
g

St
at
us
O
ut
pu
tD
at
a

wo
t:U

ni
tO
fM
ea
su
re

wo
t:h
as
O
ut
pu
t

Da
ta

wo
t:i
sA
cc
es
ib
le
Th
ro
ug
h

wo
t:i
sA
cc
es
ib
le
Th
ro
ug
h

ex
:M
yL
ED
Th
in
gC
rit
ic
al

Co
nd
iti
on
O
ut
pu
tD
at
a

wo
t:h
as
O
ut
pu
t

Da
ta

“a
pp
lic
at
io
n/
jso

n“
^^
xs
d:
st
rin
g

“a
pp
lic
at
io
n/
jso

n“
^^
xs
d:
st
rin
g

“a
pp
lic
at
io
n/
jso

n“
^^
xs
d:
st
rin
g

“a
pp
lic
at
io
n/
jso

n“
^^
xs
d:
st
rin
g

“a
pp
lic
at
io
n/
jso

n“
^^
xs
d:
st
rin
g

“a
pp
lic
at
io
n/
jso

n“
^^
xs
d:
st
rin
g

“a
pp
lic
at
io
n/
jso

n“
^^
xs
d:
st
rin
g

wo
t:h
as
M
ed
ia
Ty
pe

wo
t:h
as
M
ed
ia
Ty
pe

wo
t:h
as
M
ed
ia
Ty
pe

wo
t:h
as
M
ed
ia
Ty
pe

wo
t:h
as
M
ed
ia
Ty
pe

wo
t:h
as
M
ed
ia
Ty
pe

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 63	

	 	

	
Public	

	

	

7.4. Example	4:	Relative	Endpoints	

The	 next	 example	 shows	 how	 to	 use	 the	WoT	 ontology	 in	 combination	with	 the	 Core	 ontology	 in	
order	 to	 represent	 relative	 endpoints,	which	 is	 a	 VICINITY	 particularity.	More	 precisely,	 Figure	 34	
shows	how	the	class	core:RelativeEndpoint	 is	 instantiated	and	how	its	 instances	are	 linked	
to	a	non-relative	endpoint	by	means	of	the	object	property	core:isRelativeTo.	In	addition,	an	
external	ontology	to	represent	photometers	is	used.		

	 	

Figure	34.	Example	of	relative	endpoints.	

	

w
ot
:p
ro
vi
de
sI
nt
er

ac
tio
nP
at
te
rn

ex
:s
ta
rs
1

w
ot
:T
hi
ng

w
ot
:In
te
ra
ct
io
nP
at
te
rn

ex
:s
ta
rs
1t
am

b

ex
:s
ta
rs
1t
sk
y

ex
:s
ta
rs
1m

ag

ex
:s
ta
rs
1f
re
q

w
ot
:P
ro
pe
rty

w
ot
:L
in
k

ex
:s
ta
rs
1t
am

bL
in
k1

ex
:s
ta
rs
1t
sk
yL
in
k1

“p
ro
pe
rti
es
/ta
m
b“
^^
xs
d:
st
rin
g

w
ot
:re
la
tiv
eH

re
f

“p
ro
pe
rti
es
/ts
ky
“^
^x
sd
:s
tri
ng

ex
:s
ta
rs
1m

ag
Li
nk
1

“p
ro
pe
rti
es
/m
ag
“^
^x
sd
:s
tri
ng

w
ot
:re
la
tiv
eH

re
f

w
ot
:re
la
tiv
eH

re
f

ex
:s
ta
rs
1f
re
qL
in
k1

“p
ro
pe
rti
es
/fr
eq
“^
^x
sd
:s
tri
ng

w
ot
:re
la
tiv
eH

re
f

w
ot
:p
ro
vi
de
sI
nt
er

ac
tio
nP
at
te
rn

w
ot
:p
ro
vi
de
sI
nt
er

ac
tio
nP
at
te
rn

w
ot
:p
ro
vi
de
sI
nt
er

ac
tio
nP
at
te
rn

w
ot
:is
Ac
ce
si
bl
eT
hr
ou
gh

w
ot
:is
Ac
ce
si
bl
eT
hr
ou
gh

w
ot
:in
te
ra
ct
io
nN

am
e

“ta
m
b“
^^
xs
d:
st
rin
g

w
ot
:in
te
ra
ct
io
nN

am
e

“ts
ky
“^
^x
sd
:s
tri
ng

w
ot
:in
te
ra
ct
io
nN

am
e

“m
ag
“^
^x
sd
:s
tri
ng

w
ot
:in
te
ra
ct
io
nN

am
e

“fr
eq
“^
^x
sd
:s
tri
ng

w
ot
:h
as
M
ed
ia
Ty
pe

w
ot
:h
as
M
ed
ia
Ty
pe

w
ot
:th
in
gN

am
e

“s
ta
rs
1“
^^
xs
d:
st
rin
g

w
ot
:is
Ac
ce
si
bl
eT
hr
ou
gh

w
ot
:is
Ac
ce
si
bl
eT
hr
ou
gh

on
to
:P
ho
to
m
et
er

w
ot
:h
as
M
ed
ia
Ty
pe

w
ot
:h
as
M
ed
ia
Ty
pe

ex
:s
ta
rs
1L
in
k1

“h
ttp
://
lo
ca
lh
os
t:5
00
0/
th
in
gs
/

st
ar
s1
“^
^x
sd
:s
tri
ng

w
ot
:h
re
f

w
ot
:h
as
M
ed
ia
Ty
pe

co
re
:R
el
at
iv
eE
nd
po
in
t

w
ot
:is
Ac
ce
si
bl
eT
hr
ou
gh

co
re
:is
R
el
at
iv
eT
o

co
re
:is
R
el
at
iv
eT
o

co
re
:is
R
el
at
iv
eT
o

co
re
:is
R
el
at
iv
eT
o

“a
pp
lic
at
io
n/
js
on
“^
^x
sd
:s
tri
ng

“a
pp
lic
at
io
n/
js
on
“^
^x
sd
:s
tri
ng

“a
pp
lic
at
io
n/
js
on
“^
^x
sd
:s
tri
ng

“a
pp
lic
at
io
n/
js
on
“^
^x
sd
:s
tri
ng

“a
pp
lic
at
io
n/
js
on
“^
^x
sd
:s
tri
ng

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 64	

	 	

	
Public	

	

	

7.5. Example	5:	Temperature	sensor	description	

The	next	example	shows	how	to	describe	a	given	sensor,	in	this	case	a	thermometer,	using	the	Core	
ontology	and	the	WoT	module.	The	example	 is	graphically	 represented	 in	Figure	35.	The	particular	
thermometer	characteristics	are	the	following:	

• Name:	Temperature	Sensor	01	
• Type:	Thermometer	
• GUID:	5072dd0b-c2f0-4744-9dd4-dff344d8e2bb	
• Properties:	

o Temperature:	
§ Name:	Temperature	
§ Observed	Property:	Average	temperature	
§ Datatype:	Double	
§ Writable:	no	
§ Units	of	measure:	ºC	

• Events:	
o Temperature:	

§ Name:	Temperature	New	Value	
§ Observed	Property:	Average	temperature	

• Capabilities:	
o Frequency:	100	seconds	
o Resolution:	0.3	ºC	
o Accuracy:	1	ºC	
o Measurement	range:	0	-	40	ºC	

It	is	worth	noting	that	the	example	also	represents	how	to	use	the	SSN	ontology	to	describe	device	
characteristics	 such	as	 the	 frequency,	 resolution	or	accuracy.	This	 representation	 is	 combined	with	
the	pattern	shown	in	Section	6.2.	

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 65	

	 	

	
Public	

	

	

	

	

Figure	35.	Thermometer	description	example.	

7.6. Example	6:	Mappings	for	geo	location	

In	order	 to	 show	how	 to	use	 the	WoT	Mappings	ontology	 in	 combination	with	 the	Core	 and	WoT	
modules,	 the	 example	 in	 Figure	 36	 is	 provided.	 In	 this	 case,	 a	 thing	 description	 can	 be	 linked	 to	
access	 mappings	 using	 the	 object	 property	 map:hasAccessMapping.	 The	
map:AccessMapping	class	is	 instantiated	to	represent	two	mappings,	which	are	represented	by	
individuals	 of	 the	 class	 map:Mapping.	 These	 mappings	 indicate	 how	 to	 transform	 specific	 field	

wot:providesInteraction
Pattern

ex:TemperatureSensor01

wot:Thing

wot:InteractionPattern

ex:TemperatureSensor01TempProp

wot:Property

wot:Event

wot:isWritable “false”^^xsd:boolean

xsd:double

wot:hasValueType

om:degree_Celsiuswot:providesInteraction
Pattern

wot:interactionName “Temperature“^^xsd:string
wot:thingName

“Temperature Sensor
01“^^xsd:string

wot:DataSchema wot:DataType
ex:TemperatureSensor01

TempPropOutputDatawot:hasOutput
Data

core:serialNumber

“5072dd0b-c2f0-4744-9dd4-
dff344d8e2bb“^^xsd:string

core:Thermometer

wot:isMeasuredIn

ex:TemperatureSensor01TempEvent

wot:interactionName “Temperature New Value“^^xsd:string

wot:isMeasuredIn

core:monitors

core:AverageTemperature

core:Temperature
AmbientProperty

core:monitors

core:monitors

ssn:MeasurementCapability ssn:Frequency
ex:TemperatureSensor01
MeasurementCapability

ex:TemperatureSensor
01Frequency

ssn:hasMeasurementProperty

ssn:hasMeasurementCapability ex:TemperatureSensor
01FrequencyValue

ssn:hasValue

core:Value

rdf:value “100“^^xsd:integer

wot:isMeasuredIn

om:Unit_of_measure

om:second-time

ex:TemperatureSensor01
MeasurementeRange

ssn:hasMeasurementProperty ex:TemperatureSensor01
MeasurementRangeValue

ssn:hasValue

core:Value

core:hasMaxValue “0“^^xsd:integer

wot:isMeasuredIn
ssn:MeasurementRange

om:Unit_of_measure

core:hasMinValue “40“^^xsd:integer

ssn:Resolution
ex:TemperatureSensor

01Resolution

ssn:hasMeasurementProperty
ex:TemperatureSensor

01ResolutionValue

ssn:hasValue

core:Value

rdf:value “0.3“^^xsd:float

wot:isMeasuredIn

om:Unit_of_measure

om:degree_Celsius

ssn:Accuracy
ex:TemperatureSensor

01Accurary

ssn:hasMeasurementProperty
ex:TemperatureSensor

01AccuracyValue

ssn:hasValue

core:Value

rdf:value “1“^^xsd:integer

wot:isMeasuredIn

Referenced ontologies:
 core: http://iot.linkeddata.es/def/core#
 wot: http://iot.linkeddata.es/def/wot#
 om: http://www.wurvoc.org/vocabularies/om-1.8/
 ssn: http://purl.oclc.org/NET/ssnx/ssn#

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 66	

	 	

	
Public	

	

	

values	 from	a	 JSON	document,	 indicated	by	 the	object	property	map:key,	 into	RDF	 triples	of	 the	
properties	 geo:lat	 and	 geo:long,	 indicated	 by	 the	 object	 property	 map:predicate.	 The	
endpoint	 from	 which	 the	 JSON	 structures	 would	 be	 retrieved	 from	 is	 indicated	 from	 the	 access	
mapping	instance	by	means	of	the	object	property	map:mapResourcesFrom.	

	

Figure	36.	Mappings	for	geo	coordinates	example.	

An	example	of	 interpretation	of	WoT	mappings	by	the	Gateway	API	 is	shown	 in	Figure	37.	
Such	figure	includes	the	definition	of	the	mappings	already	shown	in	Figure	36,	an	example	
of	JSON	file	containing	some	geo	coordinates,	and	the	resulting	RDF	triples	produced	by	the	
Gateway	API	after	applying	 the	mappings	defined	 to	 the	 JSON	document.	Such	 figure	also	
indicates	the	steps	carried	out	in	order	to	generate	the	RDF	triples	for	the	geo	coordinates.	
These	steps	are:	

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 67	

	 	

	
Public	

	

	

1. The	Gateway	API	should	be	aware	of	the	semantic	description	of	the	device,	at	least	the	part	
of	the	mappings,	highlighted	in	the	red	box.		

2. The	Gateway	 API	 accesses	 the	 endpoint	 or	 link	 in	which	 the	 data	 is	 provided,	 getting,	 for	
example	the	data	in	the	JSON	shown	in	Figure	37.	

3. The	Gateway	API	retrieves	the	JSON	document.	
4. By	means	of	 applying	 the	mappings	 to	 that	 data,	 the	Gateway	API	 is	 able	 to	 generate	 the	

corresponding	triples	in	RDF	shown	at	the	bottom-right	part	of	Figure	37.		

	

Figure	37.	Translation	of	geo	coordinates	by	using	WoT	mappings	ontology	example	

7.7. Example	7:	Instantiation	of	IoT	objects	to	enable	the	semantic	discovery	

According	to	“D1.5.	VICINITY	technical	requirements	specification”,	the	core	component	responsible	
for	 semantic	 discovery	 of	 IoT	 objects	 is	 VICINITY	 Semantic	 discovery	 and	 Dynamic	 Agent	
Configuration	 Platform.	 This	 component	 is	 implemented	 as	 the	 set	 of	 services	 above	 a	 semantic	
triplestore.	 Such	 semantic	 triplestore	 contains	 VICINITY	 ontology	 and	 all	 instances	 of	 available	 IoT	
objects	 acquired	 from	 adopted	 infrastructures.	 Instances	 are	 mapped	 into	 VICINITY	 ontology	 and	
thus	are	available	for	semantic	search	–	the	semantic	discovery.	

Slide 20

core:describes

wot:Link

ex:TemperatureSen
sor01TD-AM1

map:AccessMapping

map:hasAccess
Mapping

ex:TemperatureSe
nsor01AM-Link1 wot:hasMediaType

“http://localhost:5005/things/TemperatureSensor01/pos“^^xsd:string

wot:href

map:Mapping

ex:mapping1

ex:mapping2

“latitude“^^xsd:stringmap:key

“longitude“^^xsd:stringmap:key

geo:lat

geo:long

map:predicate

map:predicate

map:hasMapping

map:Mapping

map:mapsResourcesFrom

ex:TemperatureSens
or01TD

core:ThingDescription

“application/json“^^xsd:string

map:hasMapping

wot:providesInteraction
Patternex:TemperatureSensor01

wot:Thing

wot:InteractionPattern

ex:TemperatureSensor01TempProp

wot:Property

wot:isWritable “false”^^xsd:boolean

xsd:double

wot:hasValueType

om:degree_Celsius

wot:interactionName “Temperature“^^xsd:string
wot:thingName

“Temperature Sensor
01“^^xsd:string

wot:DataSchema wot:DataType
ex:TemperatureSensor
01TempOutputDatawot:hasOutput

Data

core:serialNumber

“5072dd0b-c2f0-4744-9dd4-
dff344d8e2bb“^^xsd:string

core:Thermometer

wot:isMeasuredIn

wot:isMeasuredIn

core:AverageTemperature

core:Temperature
AmbientProperty

core:monitors

om:Unit_of_measure

geo:SpatialThing

wot:isAccessibleThrough

wot:Link

ex:TemperatureSens
or01TempPropLink wot:hasMediaType

“http://localhost:5005/things/TemperatureSensor01/temp“^^xsd:string

wot:href

“application/json“^^xsd:string

“40.451”geo:lat

“-3.7261”geo:long

ex:TemperatureSensor01

{
“latitude”:	40.451,	
“longitude”:-3.7261

}

1

2 3

4

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 68	

	 	

	
Public	

	

	

The	 instantiation	 of	 IoT	 objects	 is	 part	 of	 IoT	 object	 registration	 process.	 In	 VICINITY,	 for	 each	
infrastructure	 to	 be	 adopted,	 there	 exist	 standalone	 client	 node.	 The	 registration	 process	 is	 by	
default	 triggered	when	 the	new	 client	 node	 starts.	 It	 is	 necessary	 to	 inform	 the	VICINITY	platform	
about	 all	 IoT	 objects	 available	 in	 underlying	 infrastructure.	 Each	 client	 node	 contains	 the	 Adapter	
component,	which	serves	as	the	proxy/translator	between	specific	infrastructure	and	VICINITY.	This	
component	is	responsible	for	providing	the	list	of	IoT	objects	available	to	VICINITY	in	Common	Thing	
Description	Format.	Extracted	IoT	objects	are	registered	 into	VICINITY	network	and	Neighbourhood	
Manager,	 but	 they	 are	 also	 passed	 in	 to	 Semantic	 discovery	 and	 Dynamic	 Agent	 Configuration	
Platform	 to	 be	 instantiated	 and	 thus	 available	 for	 semantic	 discovery.	 The	 instantiation	 process	 is	
composed	of	two	steps:	

1. Semantic	lifting	of	IoT	object	descriptions.	Each	IoT	object	description	is	extended	with	semantic	
annotations	to	VICINITY	ontology.	

2. Translation	into	semantic	formalism	and	ontology	population.	The	semantically	annotated	IoT	
object	descriptions	are	transformed	into	Notation332	language,	which	already	represents	the	
ontology	instance	in	proper	semantic	formalism.	This	instance	is	stored	into	ontology	and	
available	for	semantic	search.	

The	particular	steps	of	 instantiation	process	will	be	 illustrated	 for	one	simple	example	of	LightBulb	
device	 providing	 one	 property	 for	 reading.	 The	 provided	 examples	 describe	 the	 current	 prototype	
implementation	 of	 ontology	 instantiation	 process	 done	 as	 part	 of	work	 in	 T3.2	 VICINITY	 Semantic	
Discovery	and	Dynamic	Configuration	Services.	

The	first	step	is	the	acquisition	of	 IoT	object	descriptions	 from	the	 infrastructure.	 In	this	case,	the	
adapter	 component	 provides	 the	 list	 of	 all	 IoT	 objects	 available	 to	 VICINITY	 in	 Common	 Thing	
Description	Format.	The	Thing	Description	format	provided	in	WoT	working	group	current	practices	
document	[19]	was	used	as	the	core	of	this	description	 language	and	was	slightly	adjusted	to	fulfill	
the	VICINITY	 requirements.	 The	example	of	 LightBulb	device	 in	Common	Thing	Description	Format	
extracted	from	adapter	is	in	Listing	1.	

In	 this	example,	 there	 is	presented	the	example	adjustment	of	core	Thing	Description	 form,	where	
general	 properties/links	 objects	 were	 updated	 to	 properties/read_links	 and	
properties/write_links,	 as	 it	 was	 necessary	 to	 distinguish	 which	 properties	 are	 also	
available	only	for	reading	or	writing.	

The	 extracted	 list	 of	 IoT	 object	 is	 passed	 into	 the	 Semantic	 discovery	 and	 Dynamic	 Agent	
Configuration	Platform	for	ontology	instantiation.	

	

																																																								
32	https://www.w3.org/TeamSubmission/n3/	

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 69	

	 	

	
Public	

	

	

[{
 "oid": "bulb1",
 "type": "LightBulb",
 "properties": [{
 "pid": "consumption",
 "monitors": "MeanPowerConsumption",
 "output": {
 "units": "watt",
 "datatype": "double"
 },
 "read_links": [{
 "href": "/objects/{oid}/properties/{pid}",
 "mediatype": "application/json"
 }]
 }],
 "actions": []
}]	

Listing	1.	LightBulb	device	in	Common	Thing	Description	Format.	

The	semantic	 lifting	process	 takes	 into	account	the	preconfigured	 list	of	keys	 in	JSON	schema.	The	
current	 implementation	 of	 semantic	 lifting	 constructs	 the	 JSON-LD	 format	 by	 adding	 semantic	
annotation	to	Common	Thing	Description	Format	provided	by	adapter	by:	

• adding	annotation	for	newly	generated	unique	instance	identifier	
• adding	annotation	to	identified	ontology	class	of	IoT	object	
• adding	annotation	to	identified	ontology	classes	for	interaction	patterns	to	semantically	

distinguish	properties,	actions	and	events	in	IoT	object	description	
• adjusting	references	to	identified	ontology	instances	which	represent,	which	phenomenon’s	

are	monitored	of	affected	by	properties,	actions	and	events	in	IoT	object	description	
• adjusting	references	to	identified	units	used	by	interaction	patterns	

The	example	of	semantic	lifting	for	LightBulb	example	is	illustrated	in	Listing	2.	

For	each	IoT	object	there	is	generated	unique	identifier	of	new	ontology	instance.	In	actual	prototype	
implementation,	 it	 is	 represented	 by	 data:UUID.	 The	 data	 prefix	 represents	 the	 ontology	
namespace	for	all	instances	available	in	semantic	model,	mapped	to	http://vicinity.eu/data#	URI.	

For	 each	 IoT	 object	 lifting,	 there	 is	 added	 the	 @context	 annotation	 referring	 to	 the	 JSON-LD	
context	to	be	used	for	translation	of	lifted	object	into	Notation3	language.	

The	semantically	 lifted	 IoT	object	description	 is	 translated	 into	Notation3	 formalism	using	 JSON-LD	
context	provided	in	@context	annotation.	It	provides	the	set	of	mapping	rules	between	JSON-LD	and	
Notation3	using	VICINITY	ontology	concepts	and	relations.	The	example	containing	just	small	part	of	
JSON-LD	context	transformation	rules	is	illustrated	in	Listing	3.	

	

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 70	

	 	

	
Public	

	

	

	

	
{
 "oid": "bulb1",
 "@id": "data:d9406af9-0afe-45cd-b717-41f0727bb669",
 "@type": "core:Lightbulb",
 "@context": "thing.jsonld",
 "properties": [{
 "pid": "consumption",
 "@type": "wot:Property",
 "monitors": "core:MeanPowerConsumption",
 "output": {
 "datatype": "xsd:double",
 "units": "core:watt"
 },
 "read_links": [{
 "href": "/objects/{oid}/properties/{pid}",
 "mediatype": "application/json"
 }]
 }],
 "actions": []
}

Listing	2.	Semantically	lifted	LightBulb	device.	

{
 "@context": {
 "@vocab": "http://iot.linkeddata.es/def/wot#",
 "core": "http://iot.linkeddata.es/def/core#",
 "wot": "http://iot.linkeddata.es/def/wot#",
 "xsd": "http://www.w3.org/2001/XMLSchema#",
 "data": "http://vicinity.eu/data#",
 "properties": {
 "@id": "wot:providesInteractionPattern",
 "@type": "@id"
 },
 "actions": {
 "@id": "wot:providesInteractionPattern",
 "@type": "@id"
 },
 "read_links": {
 "@id": "wot:isReadableThrough",
 "@type": "@id"
 },
 "write_links": {
 "@id": "wot:isWritableThrough",
 "@type": "@id"
 },
}

Listing	3.	Illustration	of	the	part	of	JSON-LD	context.	

	

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 71	

	 	

	
Public	

	

	

The	translation	result	into	Notation3	of	the	IoT	object	instance	is	illustrated	in	Listing	4.	

Once	the	Notation3	is	generated,	it	can	be	used	for	direct	population	of	ontology	with	new	IoT	object	
instance	and	it	is	available	for	semantic	discovery.			
Prefix definition
@prefix core: <http://iot.linkeddata.es/def/core#> .
@prefix wot: <http://iot.linkeddata.es/def/wot#> .
@prefix data: <http://vicinity.eu/data#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

LightBulb instance
data:d9406af9-0afe-45cd-b717-41f0727bb669
 rdf:type core:Lightbulb ;
 wot:thingName "bulb1"^^xsd:string ;
 wot:providesInteractionPattern _:b0 .

interaction pattern enabling both reading and writing capability
_:b0
 rdf:type wot:Property ;
 core:monitors core:MeanPowerConsumption ;
 wot:interactionName "consumption"^^xsd:string ;
 wot:hasOutputData _:b1 ;
 wot:isReadableThrough _:b2 ;

instantiation of data model
_:b1
 wot:hasValueType "double"^^xsd:string ;
 wot:isMeasuredIn core:watt .

instantiation of endpoint reference for reading
_:b2
 wot:href "/objects/{oid}/properties/{pid}"^^xsd:string .

Listing	4.	Illustration	of	the	IoT	object	description	in	Notation3.	

Finally,	IoT	object	instances	contain	semantic	references	to	VICINITY	ontology	classes	and	instances.	
Using	 this	 references,	 VICINITY	 ontology	 can	 be	 fully	 used	 for	 semantic	 discovery	 performed	 as	
semantic	search.	

	 	

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 72	

	 	

	
Public	

	

	

8. Conclusions	

Along	this	document	the	methodology,	 infrastructure	and	current	version	of	 the	VICINITY	ontology	
network	have	been	detailed.	A	 review	of	existing	 standards	and	some	examples	about	how	to	use	
the	 VICINITY	 ontologies	 have	 also	 been	 provided.	 The	 current	 ontology	 network	 is	 composed	 by	
three	 modules,	 namely	 the	 VICINITY	 Core	 ontology,	 the	 WoT	 ontology	 and	 the	 WoT	 Mappings	
ontology.	

The	VICINITY	ontology	network	in	its	version	0.1	not	only	covers	all	the	requirements	defined	for	the	
release	0.1	of	the	VICINITY	platform	but	also	anticipates	the	modelling	of	some	concepts	that	might	
be	used	later	in	the	project,	as	for	example	the	neighbourhood	concepts	or	the	mappings.	However,	
there	 are	 remaining	 requirements	 to	 be	 addressed,	moreover	 for	 the	 Core	 ontology.	 In	 this	 case,	
future	steps	will	be	deciding	about	which	of	those	requirements	are	needed	to	support	the	VICINITY	
platforms	 and	 which	 ones	 should	 be	 discarded.	 Once	 this	 decision	 is	 made,	 the	 ontology	 will	 be	
updated	 accordingly,	 including	 the	 new	 concepts,	 properties	 or	 even	 modules	 needed.	 The	 WoT	
Mappings	will	be	updated	according	to	VICINITY	platforms	new	needs,	if	any.	

Apart	 from	 covering	 the	 project	 requirements,	 the	 WoT	 ontology	 developed	 within	 VICINITY	 has	
been	taken	as	base	model	for	the	W3C	Web	of	Things	Interest	Group	model.	In	this	sense,	The	WoT	
ontology	will	be	updated	as	long	as	the	thing	description	specification	from	the	Interest	Group.	

In	 terms	 of	modelling	 and	 evolving	 the	 current	 network,	 another	 future	 line	 of	work	 is	 to	 further	
describe	 types	 of	 services,	 in	 particular	 added	 value	 services.	 It	 might	 be	 also	 needed	 to	 extract	
modules	for	vertical	domains	if	needed	in	the	project	pilots	or	in	the	open	call	projects	when	they	are	
launched.	The	ontology	will	be	then	validated	within	real	scenarios	as	well	as	through	the	VICINITY	
platform.	

Other	 next	 steps	 include	 the	 analysis	 of	 the	 interoperability	 or	 conformance	 level	 between	 the	
VICINITY	ontologies	and	existing	ontologies	such	as	SOSA/SSN,	SAREF	or	oneM2M.	

In	 summary,	 this	 deliverable	 presents	 the	 first	 release	 of	 the	 VICINITY	 ontology,	 which	 is	 mainly	
focused	 on	 satisfying	 the	 requirements	 of	 the	 first	 release	 of	 the	 VICINITY	 platform.	 During	 the	
project	lifetime,	new	requirements	will	appear	and	the	VICINITY	ontology	will	be	further	developed	
continuing	with	 the	 strategy	 of	 feeding	 from	 standards	 and	 contributing	 to	 them.	 All	 the	 artifacts	
produced	during	the	ontology	development	are	available	online,	and	will	be	updated	over	time,	so	
they	represent	the	most	current	view	of	the	ontology	to	anyone	interested.	

	 	

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 73	

	 	

	
Public	

	

	

References	

[1] Bonino,	 D.	 Corno,	 F.	 DogOnt	 –	 Ontology	 Modelling	 for	 Intelligent	 Domotic	 Environments.	
ISWC	2018.	LNCS,	vol.	5318,	pp.	790-803.	Springer	(2008)	

[2] Charpenay,	 V.,	 Käbisch,	 S.,	 &	 Kosch,	 H.	 (2016).	 Introducing	 Thing	 Descriptions	 and	
Interactions:	An	Ontology	for	the	Web	of	Things.	In	SR+	SWIT@	ISWC	(pp.	55-66).	

[3] Compton,	M.,	Barnaghi,	P.,	Bermudez,	L.,	García-Castro,	R.,	Corcho,	O.,	Cox,	S.,	Graybeal,	J.,	
Hauswirth,	M.,	 Henson,	 C.,	 Herzog,	 A.,	 Huang,	 V.,	 Janowicz,	 J.,	 Kelsey,	W.D.,	 Le	 Phouc,	 D.,	
Lefort,	 L.,	 Leggieri,	M.,	Neuhaus,	H.,	Nikolov,	 A.,	 Page,	 K.,	 Passant,	 A.,	 Sheth,	 A.,	 Taylor,	 K.	
(2012).	 The	 SSN	 ontology	 of	 the	 W3C	 semantic	 sensor	 network	 incubator	 group.	 Web	
semantics:	science,	services	and	agents	on	the	World	Wide	Web,	17,	25-32.	

[4] ETSI	 TR	 103	 411-	 v1.1.1	 -	 "SmartM2M;	 Smart	 Appliances;	 SAREF	 extension	 investigation".	
(February,	2017)	

[5] ETSI	TS	103	264	-	v1.1.1	-	"SmartM2M;	Smart	Appliances;	Reference	Ontology	and	oneM2M	
mapping".	(November,	2015)	

[6] ETSI	TS	103	264	-	v2.1.1	-	"SmartM2M;	Smart	Appliances;	Reference	Ontology	and	oneM2M	
mapping".	(March,	2017)	

[7] ETSI	TS	103	410-1	–	v1.1.1	-	"SmartM2M;	Smart	Appliances	Extension	to	SAREF;	Part1:	Energy	
Domain".	(January,	2017)	

[8] ETSI	 TS	 103	 410-2	 –	 v1.1.1	 -	 "SmartM2M;	 Smart	 Appliances	 Extension	 to	 SAREF;	 Part1:	
Environment	Domain".	(January,	2017)	

[9] ETSI	 TS	 103	 410-3	 –	 v1.1.1	 -	 "SmartM2M;	 Smart	 Appliances	 Extension	 to	 SAREF;	 Part1:	
Building	Domain".	(January,	2017)	

[10] 	ETSI	 TS	 118	 112	 –	 v2.0.0	 –	 “oneM2M;	 Base	 Ontology	 (oneM2M	 TS-0012	 version	 2.0.0	
Release	2)”.	(September,	2016)	

[11] Grimm,	C.,	&	Bonino,	D.	(2014,	January).	Towards	standardization	of	M2M	communication	in	
Smart	Appliances.	 IN	EEBuilgind	Data	Models.	Energy	Efficiency	Vocabularies	&	Ontologies.	
ICT	for	Sustainable	Places.		

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 74	

	 	

	
Public	

	

	

[12] Grüniger,	M.	and	Fox,	M.	(1995)	Methodology	for	the	design	and	evaluation	of	ontologies.	In	
Skuce,	D.	 (ed.)	 IJCAI95	Workshop	on	Basic	Ontological	 Issues	 in	Knowledge	Sharing,	pp	6.1-
6.10		

[13] 	Haller,	A.,	Janowicz,	K.,	Cox,	S.,	Le	Phouc,	D.,	Taylor,	K.,	Lefrançois,	M.,	Atkinson,	r.,	García-
Castro,	 R.,	 Lieberman,	 J.,	 Stadler,	 C.	 (July,	 2017).	 Semantic	 Sensor	Network	Ontology.	W3C	
Candidate	 Recommendation.	 11	 July	 2017.	 https://www.w3.org/TR/2017/CR-vocab-ssn-
20170711/	

[14] Mathew,	 S.	 S.,	 Atif,	 Y.,	 Sheng,	 Q.	 Z.,	 &	 Maamar,	 Z.	 (2011,	 October).	 Web	 of	 things:	
Description,	 discovery	 and	 integration.	 In	 Internet	 of	 Things	 (iThings/CPSCom),	 2011	
International	Conference	on	and	4th	International	Conference	on	Cyber,	Physical	and	Social	
Computing	(pp.	9-15).	IEEE.	

[15] Poveda-Villalón,	 M.,	 Gómez-Pérez,	 A.,	 &	 Suárez-Figueroa,	 M.	 C.	 (2014).	 OOPS!(ontology	
pitfall	 scanner!):	An	on-line	 tool	 for	ontology	evaluation.	 International	 Journal	on	Semantic	
Web	and	Information	Systems	(IJSWIS),	10(2),	7-34.	

[16] Studer,	R.,	Benjamins,	V.R.,	Fensel,	D.:	Knowledge	engineering:	Principles	and	methods.	Data	
&	Knowledge	Engineering	25(1-2)	(1998)	161-197	

[17] Suárez-Figueroa,	 M.	 C.,	 Gómez-Pérez,	 A.,	 &	 Fernández-López,	 M.	 (2012).	 The	 NeOn	
methodology	for	ontology	engineering.	In	Ontology	engineering	in	a	networked	world	(pp.	9-
34).	Springer	Berlin	Heidelberg.	

[18] VICINITY	project	website	http://www.vicinity-h2020.eu	

[19] WoT	 Current	 Practices	 (Unofficial	 Draft).	 http://w3c.github.io/wot/current-practices/wot-
practices.html#quick-start-td-samples		

	

	

	

	

	

	

	 D2.2.	Detailed	Specification	of	the	Semantic	Model	 75	

	 	

	
Public	

	

	

Keywords	
Core	ontology	32,	35,	36,	37,	42,	44,	49,	50,	51,	

52,	55,	63,	64,	72	
DogOnt	..	24,	25,	26,	73	
ETSI	..	9,	13,	17,	73	
Mappings	ontology	44,	55,	56,	57,	65,	72	
oneM2M	13,	19,	20,	72,	73	
ontology	network	10,	11,	20,	32,	43,	44,	45,	46,	

72	
ORSD	..	30,	31,	34,	42	
SAREF	17,	18,	19,	72,	73	

SOSA	..	16,	72	
SSN	13,	14,	15,	16,	54,	55,	64,	72,	73	
the	ontology	requirement	27	
URI	...	23,	32,	33,	34,	44	
W3C	9,	11,	13,	15,	16,	22,	23,	46,	48,	49,	52,	

58,	59,	60,	61,	72,	73,	74	
Web	of	Things	 9,	13,	22,	23,	35,	44,	46,	48,	72,	

73	
WoT	ontology	23,	48,	49,	50,	52,	59,	60,	63,	72	

	

